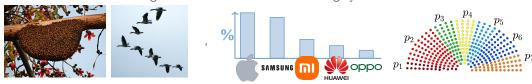
Collective decision-making on networked systems: from social networks to smart homes

Angela Fontan angfon@kth.se

Division of Decision and Control Systems KTH Royal Institute of Technology, Sweden

- Background and motivating examples
- ▶ Problem: Collective decision-making in presence of antagonism
 - Social networks as signed networks
 - The notion of frustration
 - Analysis of proposed model for collective decision-making over signed networks
 - Application: Process of government formation over signed parliamentary networks
- ▶ Problem: Design of energy-efficient smart homes
 - Smart homes as cooperative networks
 - Application: Study of social influence at KTH Live-In Lab

Context: Interpretation of urban systems as cyber-physical-human systems (CPHS)

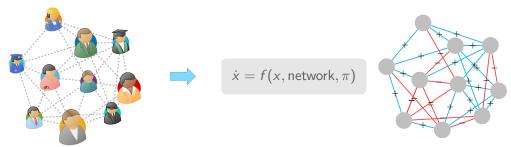

[Control for Societal Scale Challenges: Road Map 2030, eds. Annaswamy, Johansson, Pappas (2023)]

Motivating examples

Characterize models of (human) decision-making within interconnected communities... ...and how they adapt during the interaction with smart technologies

1. From collaborative to antagonistic collective decision-making systems

- 2. Design of energy-efficient smart homes
 - Building automation and control of energy-efficient smart homes
 - Integrated real-life experimental building infrastructure: KTH Live-In Lab



- ► Motivating examples
- ▶ Problem: Collective decision-making in presence of antagonism
 - Social networks as signed networks
 - The notion of frustration
 - Analysis of proposed model for collective decision-making over signed networks
 - Application: Process of government formation over signed parliamentary networks
- ► Problem: Design of energy-efficient smart homes
 - Smart homes as cooperative networks
 - Application: Study of social influence towards sustainability at KTH Live-In Lab

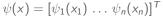
Problem: Collective decision-making in presence of antagonism

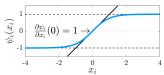
Application: Social networks

- 1. Model for collective decision-making
 - x: vector of opinions
 - equilibrium points: possible decisions
- 2. Signed networks
 - Positive weight: cooperative interaction
 - Negative weight: antagonistic interaction

Model for collective decision-making over cooperative networks

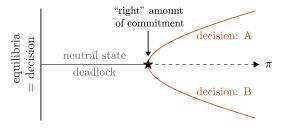
$$\dot{x} = -\Delta x + \pi A \psi(x)$$


- ▶ *n* agents, $x \in \mathbb{R}^n$ vector of opinions
- "inertia" of the agents: $\Delta = \operatorname{diag}\{\delta_1, \ldots, \delta_n\}, \ \delta_i > 0$
- ▶ interactions between the agents:


unsigned (connected) network G(A)

agent i neighbors of i

 $ightharpoonup \pi > 0$ scalar parameter

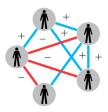

Model for collective decision-making over cooperative networks

$$\dot{x} = -\Delta x + \pi A \psi(x) \qquad (\star)$$

- \blacktriangleright $\pi =$ "social effort" or "strength of commitment" among the agents
- ► equilibria = decisions

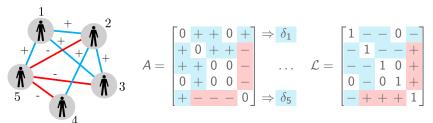
Assumption: $\delta_i = \sum_i a_{ij} \Rightarrow \mathbf{L} = \Delta - A$: Laplacian of $\mathcal{G}(A)$

Task: Study qualitative behavior of (\star) as social effort parameter π is varied



Model for collective decision-making over signed networks

Task: Study the decision-making process in a community of agents where both cooperative and antagonistic interactions coexist


Model: $\dot{x} = -\Delta x + \pi A \psi(x)$, π : social effort between the agents

Assumptions: G(A) is a signed network

Signed networks and signed Laplacian matrix

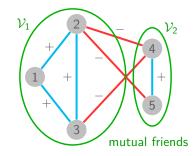
Signed Laplacian*:

$$L = \Delta - A$$

 $\Delta = \operatorname{diag}\{\delta_1, \dots, \delta_n\}: \ \delta_i = \sum_{i=1}^{n} |a_{ij}| > 0 \quad \forall i$

 $\begin{array}{c|c} \operatorname{Im} & & & \\ \uparrow & & 1 & 2 \\ \hline & & & \downarrow & \\ \Lambda(\mathcal{L}) = \operatorname{spectrum of } \mathcal{L} \end{array}$

Focus on:

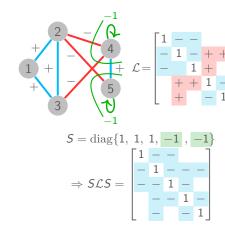

normalized signed Laplacian: $\mathcal{L} = I - \Delta^{-1}A$

^{*&}quot;opposing" signed Laplacian [Shi, Altafini, Baras, SIAM Review (2019)]

A connected signed graph $\mathcal{G}(A)$ is structurally balanced if $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$ such that every edge:

- \bullet between \mathcal{V}_1 and \mathcal{V}_2 is negative
- within \mathcal{V}_1 or \mathcal{V}_2 is positive

[F. Harary, Mich. Math. J. (1953)]

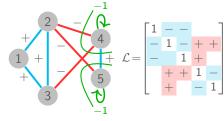

A connected signed graph $\mathcal{G}(A)$ is structurally balanced if $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$ such that every edge:

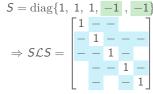
- ullet between \mathcal{V}_1 and \mathcal{V}_2 is negative
- within V_1 or V_2 is positive

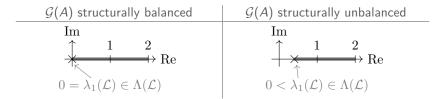
[F. Harary, Mich. Math. J. (1953)]

Lemma: G(A) is structurally balanced iff

- ▶ \exists signature matrix $S = \text{diag}\{s_1, \dots, s_n\}$, $s_i = \pm 1$, s.t. SLS has all nonpositive off-diagonal entries
- $\rightarrow \lambda_1(\mathcal{L}) = 0$

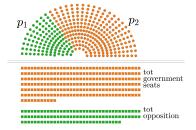

A connected signed graph $\mathcal{G}(A)$ is structurally balanced if $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$ such that every edge:

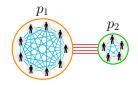

- ullet between \mathcal{V}_1 and \mathcal{V}_2 is negative
- within \mathcal{V}_1 or \mathcal{V}_2 is positive

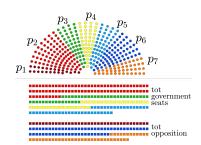

[F. Harary, Mich. Math. J. (1953)]

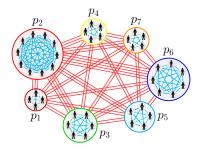
Lemma: G(A) is structurally balanced iff

- ▶ \exists signature matrix $S = \text{diag}\{s_1, \dots, s_n\}$, $s_i = \pm 1$, s.t. SLS has all nonpositive off-diagonal entries
- $\lambda_1(\mathcal{L}) = 0$

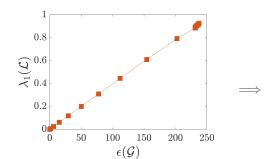





Example: Parliamentary systems


Structurally balanced network

Structurally unbalanced network



Frustration index and algebraic conflict

Task: characterize the graph distance from structurally balanced state

► Frustration Index (computation: NP-hard problem)

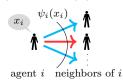
$$\epsilon(\mathcal{G}) = \min_{\substack{S = \text{diag}\{s_1, \dots, s_n\}\\ s_i = \pm 1}} \underbrace{\frac{1}{2} \cdot \sum_{i \neq j} [|\mathcal{L}| + S\mathcal{L}S]_{ij}}_{=e(S): \text{ "energy functional"}}$$

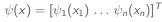
► Algebraic Conflict

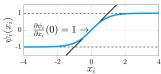
$$\xi(\mathcal{G}) = \lambda_1(\mathcal{L})$$

$$\lambda_1(\mathcal{L})$$
 good approximation of $\epsilon(\mathcal{G})$

[Fontan and Altafini, IEEE CDC (2018)]


Model for collective decision-making over signed networks


$$\dot{x} = -\Delta x + \pi A \psi(x)$$


- ▶ *n* agents, $x \in \mathbb{R}^n$ vector of opinions
- "inertia" of the agents: $\Delta = \operatorname{diag}\{\delta_1, \ldots, \delta_n\}, \ \delta_i > 0$
- ► interactions between the agents:

signed (connected) network G(A)

 $ightharpoonup \pi > 0$ "social effort" (or "strength of commitment")

$$\dot{x} = -\Delta x + \pi A \psi(x) = \Delta (-x + \pi H \psi(x)) \qquad (\star)$$

- ▶ Normalized adjacency matrix $H = \Delta^{-1}A = I \mathcal{L}$
- ▶ Dynamical interpretation: (*) is monotone $\Leftrightarrow \mathcal{G}(A)$ is structurally balanced $\Leftrightarrow \lambda_1(\mathcal{L}) = 0$

Investigate how:

• the social effort parameter π affects the existence and stability of the equilibrium points of the system (\star)

Tool: bifurcation theory ($\mathcal{L} = I - H$ has simple eigenvalues)

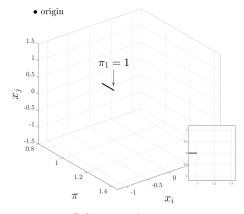
▶ the presence of antagonistic interactions affects the behavior of (*) Tool: signed networks theory (frustration)

Bifurcation analysis: Structurally balanced networks

$$\dot{x} = \Delta(-x + \pi H \psi(x)), \quad x \in \mathbb{R}^n$$

$$\pi < 1$$
: $x = 0$ only eq. point (GAS) Not enough commitment: Deadlock

$$\pi=1$$
: pitchfork bifurcation


- $\rightarrow x = 0$ saddle point
- ▶ new equilibria: x^* , $-x^*$ (loc. AS $\forall \pi > 1$)

Right commitment: Two alternative decisions x

$$\pi=\pi_2=rac{1}{1-\lambda_2(\mathcal{L})}$$
: pitchfork bifurcation

• new equilibria (stable/unstable for $\pi > \pi_2$)

Overcommitment: Several decisions

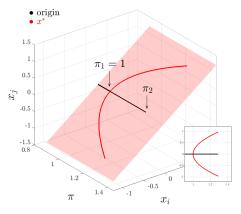
Bifurcation diagram

Bifurcation analysis: Structurally balanced networks

$$\dot{x} = \Delta(-x + \pi H \psi(x)), \quad x \in \mathbb{R}^n$$

$$\pi < 1 : \ \textit{x} = 0$$
 only eq. point (GAS) Not enough commitment: Deadlock

 $\pi=1$: pitchfork bifurcation


- $\rightarrow x = 0$ saddle point
- ▶ new equilibria: x^* , $-x^*$ (loc. AS $\forall \pi > 1$)

Right commitment: Two alternative decisions x^*

$$\pi=\pi_2=rac{1}{1-\lambda_2(\mathcal{L})}$$
: pitchfork bifurcation

• new equilibria (stable/unstable for $\pi > \pi_2$)

Overcommitment: Several decisions

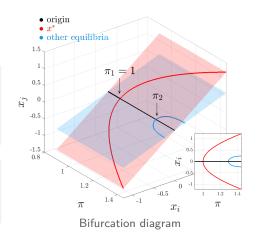
Bifurcation diagram

Bifurcation analysis: Structurally balanced networks

$$\dot{x} = \Delta(-x + \pi H \psi(x)), \quad x \in \mathbb{R}^n$$

$$\pi < 1$$
: $x = 0$ only eq. point (GAS) Not enough commitment: Deadlock

 $\pi=1$: pitchfork bifurcation


- $\rightarrow x = 0$ saddle point
- ▶ new equilibria: x^* , $-x^*$ (loc. AS $\forall \pi > 1$)

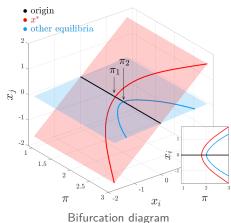
Right commitment: Two alternative decisions x^*

$$\pi=\pi_2=rac{1}{1-\lambda_2(\mathcal{L})}$$
: pitchfork bifurcation

▶ new equilibria (stable/unstable for $\pi > \pi_2$)

Overcommitment: Several decisions

Bifurcation analysis: Structurally unbalanced networks


$$\dot{x} = \Delta(-x + \pi H \psi(x)), \quad x \in \mathbb{R}^n$$

With:
$$\pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}$$
, $\pi_2 = \frac{1}{1 - \lambda_2(\mathcal{L})}$

 $\pi < \pi_1$: Not enough commitment Deadlock

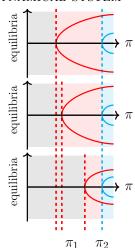
 $\pi = \pi_1$: Right commitment Two alternative decisions x^*

 $\pi = \pi_2$: Overcommitment Several decisions

Interpretation of the results as we vary the frustration

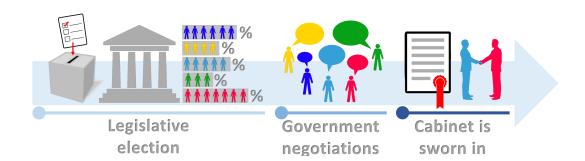
- $\pi_1 = \frac{1}{1 \lambda_1(\mathcal{L})}$ depends on the frustration $(\lambda_1(\mathcal{L}) \approx \text{frustration})$
- $\pi_2 = \frac{1}{1 \lambda_2(\mathcal{L})}$ depends on the topology, independent from the frustration

Then, the higher the frustration:

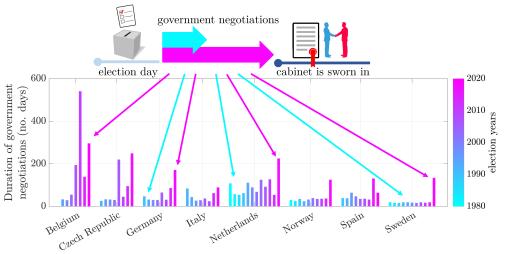

- ► the higher the social effort needed to achieve a decision
- ▶ the smaller the interval for which only two alternative decisions exist

SIGNED GRAPH DYNAMICAL SYSTEM

zero frustration

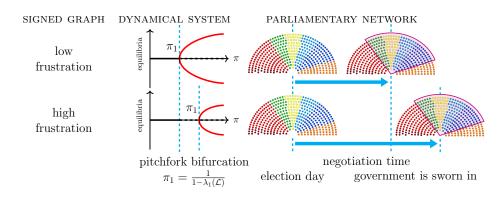

low frustration

high frustration



Application: Government formation in parliamentary democracies

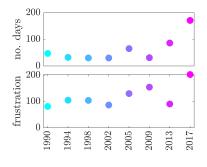
Duration of government negotiation phase

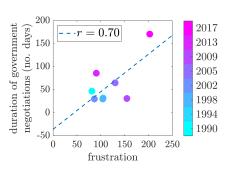

Question: can we use our model to explain this behavior?

Dynamics of the formation of a government

- ► Signed network: parliament
- ► Social effort: duration of the government negotiation phase
- ► Decision: vote of confidence of the parliament

$$\lambda_1(\mathcal{L}) \sim \text{frustration} + \pi_1 \sim \text{duration of negotiations} + \pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}$$
 $\Rightarrow \text{duration of negotiations} \sim \text{frustration}$

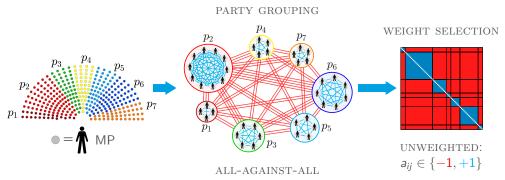



Frustration vs duration of government negotiations

Task: show that the government formation process is influenced by the frustration of the parliamentary network

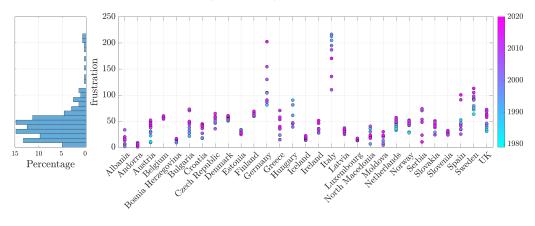
- ▶ Data: elections in 29 European countries (election years: 1978 2020)
- ▶ Method: Pearson's correlation index (r), frustration vs duration of negotiations

Example: German elections

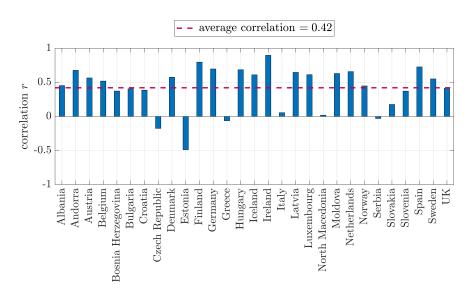


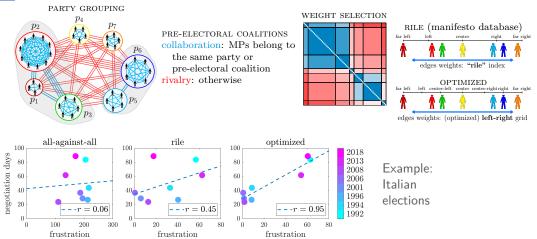
Construction of the parliamentary networks

Definition: complete, undirected, signed graph in which each MP is a node


collaboration: MPs belong to the **same** party rivalry: MPs belong to **different** parties

Are the parliamentary networks structurally balanced?


The parliamentary networks have (in general) nonzero frustration..

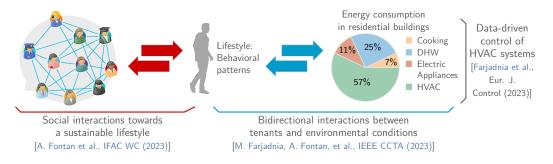

Correlation for all 29 European countries

Duration of the government negotiations vs frustration of the parliamentary networks

More complex scenarios: Coalitions and ideological differences

Results on average correlation for all 29 European countries: 0.42 (all-against-all), 0.32 (rile), 0.69 (optimized)

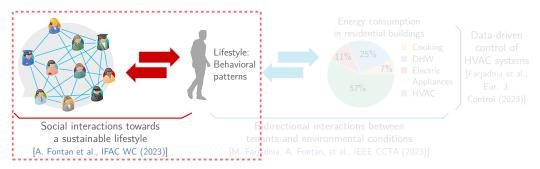
⇒ Frustration correlates well with duration of government negotiations


- ► Motivating examples
- ► Problem: Collective decision-making in presence of antagonism
 - Social networks as signed networks
 - The notion of frustration
 - Analysis of proposed model for collective decision-making over signed networks
 - Application: Process of government formation over signed parliamentary networks
- ► Problem: Design of energy-efficient smart homes
 - Smart homes as cooperative networks
 - Application: Study of social influence at KTH Live-In Lab

In collaboration with: M. Farjadnia, J. Llewellyn, C. Katzeff, M. Molinari, V. Cvetkovic, and K. H. Johansson, KTH Royal Institute of Technology, Sweden

Problem: Design of energy-efficient smart homes

- ► Context: Building sector accounts for more than 40% of the final energy use
- Challenges for control in smart buildings:
 The behavior of occupants have large effects on building energy use



[[]Fontan et al., IFAC WC (2023); Farjadnia et al., IEEE CCTA (2023); Farjadnia et al., Eur J Control (2023)]

Problem: Design of energy-efficient smart homes

- ► Context: Building sector accounts for more than 40% of the final energy use
- ► Challenges for control in smart buildings: The behavior of occupants have large effects on building energy use

Design longitudinal experimental study of social influence in behavioral changes towards sustainability, to be implemented in the KTH Live-In Lab

Combining several factors.

- ► Modeling household and energy use behavior [Wilson and Dowlatabadi (2007), Peng et al. (2012);...
- ► Planning ad hoc social interventions on habits [Steg and Vlek (2009); Frederiks et al. (2015);..]
- Designing new technologies and infrastructures (flexible Live-In Laboratories)
 [Intille et al. (2006); Das et al. (2020);...]

..and proposing a social network perspective:

Experimental design as collective (household) decision-making process with interconnected tenants of KTH Live-In Lab as the decision-makers

Problem formulation

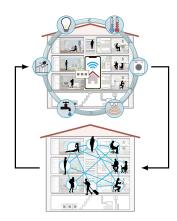
Design longitudinal experimental study of social influence in behavioral changes towards sustainability, to be implemented in the KTH Live-In Lab

Combining several factors..

- ► Modeling household and energy use behavior [Wilson and Dowlatabadi (2007), Peng et al. (2012);...]
- ► Planning ad hoc social interventions on habits [Steg and Vlek (2009); Frederiks et al. (2015);...]
- ► Designing new technologies and infrastructures (flexible Live-In Laboratories)
 [Intille et al. (2006); Das et al. (2020);..]

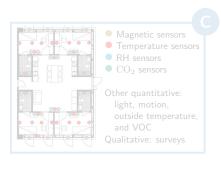
..and proposing a social network perspective:

Experimental design as collective (household) decision-making process with interconnected tenants of KTH Live-In Lab as the decision-makers


Exploring diffusion of sustainable behaviors: Smart homes as social networks

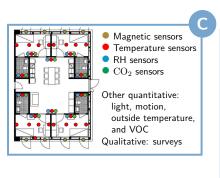
Approach Observe how tenants' sustainability scores change over time given that:

- ► Tenants are encouraged to exchange opinions with their neighbors
- ► Tenants can observe the average household sustainability score

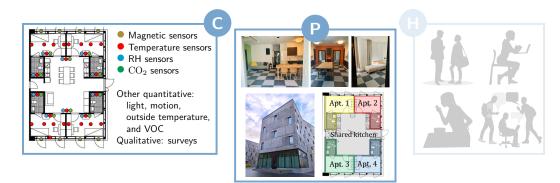

Experimental campaign based on the interpretation:

- ► Smart home: Social network of interacting tenants
- lacktriangle Lifestyle choices: Decisions \sim sustainability score
- ► Intuition: Feedback on global state (household) to reduce observed discrepancy between lifestyle choices and opinions on environmental responsibility

- ▶ Apartments with extensive sensing, data collection, and control capabilities
- ▶ Redesignable apartment layout allowing various experimental environments
- ► Interaction capability with and between occupants (experiments involving 4 apartments and 5 tenants)



- ► Apartments with extensive sensing, data collection, and control capabilities
- ▶ Redesignable apartment layout allowing various experimental environments
- ► Interaction capability with and between occupants (experiments involving 4 apartments and 5 tenants)



- ► Apartments with extensive sensing, data collection, and control capabilities
- ► Redesignable apartment layout allowing various experimental environments
- ► Interaction capability with and between occupants (experiments involving 4 apartments and 5 tenants)

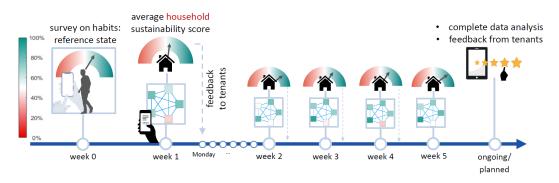
- ► Apartments with extensive sensing, data collection, and control capabilities
- ► Redesignable apartment layout allowing various experimental environments
- ► Interaction capability with and between occupants (experiments involving 4 apartments and 5 tenants)

Design of the case study

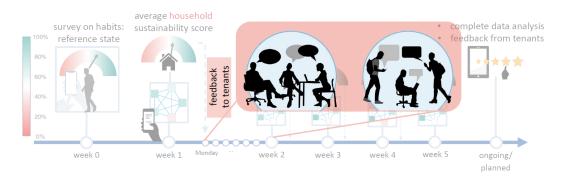
- ► Small group of participants
- ► Short time period

- ► Small group of participants
- ► Short time period

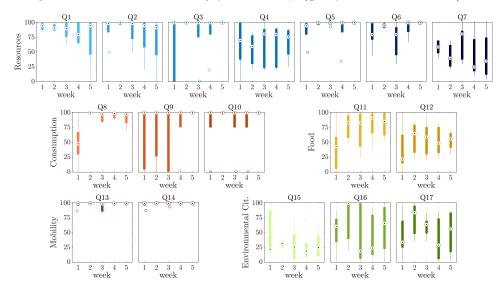
- ► Small group of participants
- ► Short time period



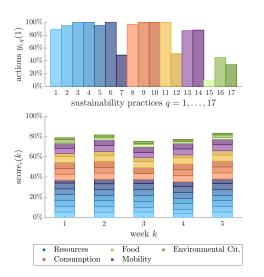
- ► Small group of participants
- ► Short time period

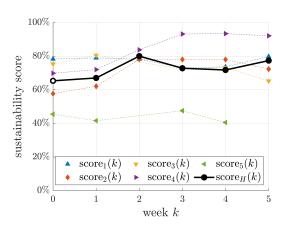


- ► Small group of participants
- ► Short time period



- ► Small group of participants
- ► Short time period


Summary of actions on sustainability practices Q# (grouped in 5 dimensions)



Preliminary results (II/II)

Actions $y_{i,q}(k)$ and sustainability score of tenant i of the KTH Live-In Lab

Sustainability scores of all tenants and average household sustainability score

Context Urban systems as CPHS

Focus Human decision-making within interconnected communities

Two motivating applications

- 1. Political decision-making
 - Government formation process as collective decision-making system over signed parliamentary networks
 - We show that the frustration of the parliamentary networks correlates well with the duration of government negotiation phase
- 2. Decision-making in smart homes
 - Smart homes as social networks
 - Design of experimental study, to investigate the dynamics of tenants' sustainability scores
 - Ongoing/future directions (to implement at the KTH Live-In Lab):
 - $\,\blacktriangleright\,$ Theoretical analysis on impact of campaigns and incentives design
 - ► Compare surveys' data with sensor data collected at KTH Live-In Lab

Thank you for your attention!
Angela Fontan, angfon@kth.se, angelafontan.github.io