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Background
Motivation

Animal groups
⇒ decision reached through collaboration

Social Networks Parliamentary SystemsSocial Networks Parliamentary Systems

⇒ both cooperative and antagonistic interactions may coexist
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Background
Problem: collective decision-making in presence of antagonism

ẋ = f (x , network, π) ,

1. Signed networks
• positive weight: cooperative interaction
• negative weight: antagonistic interaction

2. Model for collective decision-making
• x : vector of opinions
• equilibrium points: possible decisions
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Model for collective decision-making

ẋ = −∆x + πAψ(x)

I n agents, x ∈ Rn vector of opinions
I “inertia” of the agents: ∆ = diag{δ1, . . . , δn}, δi > 0
I interactions between the agents:

unsigned (connected) network G(A)

.

.

.

xi

agent i neighbors of i

ψi(xi)

ψ(x) = [ψ1(x1) . . . ψn(xn)]T

and π > 0 scalar parameter

Gray et al, ”Multiagent Decision-Making Dynamics Inspired by Honeybees”, IEEE TCNS, 2018
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Model for collective decision-making

ẋ = −∆x + πAψ(x) (?)

I π = “social effort” or “strength of commitment” among the agents
I equilibria = decisions

Assumption: δi =
∑

j aij ⇒ L = ∆− A: Laplacian of G(A)

Task: Study qualitative behavior of (?) as social effort parameter π is varied
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Model for collective decision-making over signed networks

Task: Study the decision-making process in a community of agents
where both cooperative and antagonistic interactions coexist

Model: ẋ = −∆x + πAψ(x)

Assumptions: G(A) is signed, π: “social effort” between the agents
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−

−

−

6



Signed networks and signed Laplacian matrix

A =


0 + + 0 +
+ 0 + + −
+ + 0 0 −
0 + 0 0 −
+ − − − 0


⇒

⇒

δ1

. . .

δ5

L =


1 − − 0 −
− 1 − − +
− − 1 0 +
0 − 0 1 +
− + + + 1



Signed Laplacian:

L = ∆− A

∆ = diag{δ1, . . . , δn} : δi =
n∑

j=1
|aij | > 0 ∀ i

Focus on:

normalized signed Laplacian: L = I −∆−1A

Re

Im
1 2

Λ(L) = spectrum of L
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Structural balance

A connected signed graph is
structurally balanced
if V = V1 ∪ V2 s.t. every edge:
• between V1 and V2 is negative
• within V1 or V2 is positive

It is structurally unbalanced
otherwise

+

+

+ +

−

−

−

V1 V2

mutual friends

F. Harary, “On the notion of balance of a signed graph”, Michigan Mathematical Journal, 1953
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Example: Parliamentary systems

p1
p2

p1

p2

p3

p4

p5

p6

p7

Structurally balanced network

Structurally unbalanced network
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Structural balance: equivalent conditions

G(A) connected signed graph is
structurally balanced iff
1. ∃ signature matrix

S = diag{s1, . . . , sn}, si = ±1, s.t.
SLS has all nonpositive
off-diagonal entries (SAS ≥ 0)

2. λ1(L) = 0

1

2

3

4

5+

+

+ +

−

−

−

+

+

+

−1

−1

A =


0 + +
+ 0 + − −
+ + 0 −
− − 0 +
− + 0

 L =


1 − −
− 1 − + +
− 1 +

+ + 1 −
+ − 1


S = diag{1, 1, 1, −1 , −1}

SAS =


0 + +
+ 0 + + +
+ + 0 +

+ + 0 +
+ + 0

 SLS =


1 − −
− 1 − − −
− − 1 −
− − 1 −
− − 1



⇒ G(A) connected signed graph
is structurally unbalanced

iff λ1(L) > 0 +

+

+ +

−

+

+ Re

Im
1 2

0 < λ1(L) ∈ Λ(L)
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Frustration index and algebraic conflict

Task: characterize the graph distance from structurally balanced state

I Frustration Index
(computation: NP-hard problem)
ε(G) = min

S=diag{s1,...,sn}
si =±1

1
2 ·
∑
i 6=j

[ |L|+ SLS ]ij︸ ︷︷ ︸
=e(S): “energy functional”

I Algebraic Conflict

ξ(G) = λ1(L)

=⇒ λ1(L) good
approximation of ε(G)
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Model for collective decision-making over signed networks

ẋ = −∆x + πAψ(x)

I n agents, x ∈ Rn vector of opinions
I “inertia” of the agents: ∆ = diag{δ1, . . . , δn}, δi > 0
I interactions between the agents:

+

+

+

+

+

−

−

−

signed (connected) network G(A)

.

.

.

xi

agent i neighbors of i

ψi(xi)

ψ(x) = [ψ1(x1) . . . ψn(xn)]T

and π > 0 “social effort” (or “strength of commitment”)

A. Fontan and C. Altafini, “The role of frustration in collective decision-making dynamical
processes on multiagent signed networks”, IEEE TAC, 2022
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Dynamical interpretation of structural balance

ẋ = −∆x + πAψ(x) = ∆
(−x + π∆−1A︸ ︷︷ ︸

:=H

ψ(x)
)

(?)

“Laplacian” assumption: δi =
∑

j |aij | > 0 ∀i ⇒ L = I − H

Then at the origin for π = 1:

Jacobian: J = −L = ∆(−L)

and

(?) is monotone ⇔ G(A) is structurally balanced ⇔ λ1(L) = 0.

13



Task

ẋ = −∆x + πAψ(x) = ∆
(−x + πHψ(x)

)
(?)

Investigate how:
I the social effort parameter π affects the existence and stability of the

equilibrium points of the system (?)
Tool: bifurcation theory (L = I − H has simple eigenvalues)

I the presence of antagonistic interactions affects the behavior of (?)
Tool: signed networks theory (frustration)
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Bifurcation analysis: structurally balanced networks

ẋ = ∆
(−x + πHψ(x)

)
, x ∈ Rn

π < 1: x = 0 only eq. point (GAS)

π = 1: pitchfork bifurcation
I x = 0 saddle point
I new equilibria: x∗, −x∗ (loc. AS ∀π > 1)

π = π2 =
1

1−λ2(L) : pitchfork bifurcation
I new equilibria (stable/unstable for π > π2)

Bifurcation diagram

A. Fontan and C. Altafini, “Multiequilibria analysis for a class of collective decision-making
networked systems”, IEEE TCNS, 2018
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ẋ = ∆
(−x + πHψ(x)

)
, x ∈ Rn

π < 1: x = 0 only eq. point (GAS)

π = 1: pitchfork bifurcation
I x = 0 saddle point
I new equilibria: x∗, −x∗ (loc. AS ∀π > 1)

π = π2 =
1

1−λ2(L) : pitchfork bifurcation
I new equilibria (stable/unstable for π > π2)

Bifurcation diagram

A. Fontan and C. Altafini, “Multiequilibria analysis for a class of collective decision-making
networked systems”, IEEE TCNS, 2018

15



Bifurcation analysis: structurally balanced networks
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Bifurcation analysis: structurally unbalanced networks
ẋ = ∆

(−x + πHψ(x)
)
, x ∈ Rn

π1 = 1
1− λ1(L) π2 = 1

1− λ2(L)

π < π1: x = 0 only eq. point (GAS)

π = π1: pitchfork bifurcation
I x = 0 saddle point
I new equilibria: x∗, −x∗ (loc. AS)

π = π2: pitchfork bifurcation
I new equilibria (stable/unstable for π > π2)

Bifurcation diagram
A. Fontan and C. Altafini, “The role of frustration in collective decision-making dynamical
processes on multiagent signed networks”, IEEE TAC, 2022.
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Sketch of the proof: first bifurcation
Theorem

Assuming:
I S-shaped ψ: ∀i ψi is odd, saturated, sigmoidal, monotonically increasing with ∂ψi

∂xi
(0) = 1

I λ1(L) > 0 simple
Then:

x∗ 6= 0 is equilibrium point of
ẋ = ∆ (−x + πHψ(x))

⇐⇒ π > π1 = 1
1−λ1(L)

Proof: Sufficiency [x = 0 is GAS when π ≤ π1]
Lyap. function V : Rn → R+, V (x) =

∑
i
∫ xi
0 ψi (s)ds ≥ 0 (radially unbounded)

V̇ (x) = ψ(x)T ẋ = −ψ(x)T ∆x︸ ︷︷ ︸
>ψ(x)T ∆x

+ ψ(x)T∆(πH)︸ ︷︷ ︸
=∆

1
2 (π∆

1
2 H∆− 1

2 )∆
1
2

ψ(x)

< −ψ(x)T ∆ 1
2
(
I − π∆ 1

2 H∆− 1
2
)︸ ︷︷ ︸

symmetric, psd (�0)

∆ 1
2ψ(x) ≤ 0 ∀x 6= 0
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Sketch of the proof: first bifurcation
Proof: Necessity [pitchfork bifurcation when π = π1 = 1

1−λ1(L) = 1
λn(H) ]

Φ(x , π) = −x + πHψ(x) = 0, J := ∂Φ
∂x (0, π1) = −I + π1H

Lyapunov-Schimdt reduction:

I v (right), w (left) eigenvectors of J relative to 0 ⇒ E = I − vwT : Rn → range(J)
I − E : Rn → ker(J)

I split x = yv + r , y ∈ R and r = Ex ⇒ near (0, π1):
{
0 = E Φ(yv + r , π)
0 = (I − E ) Φ(yv + r , π)

I implicit function theorem: ∃! r = R(yv , π) : E Φ(yv + R(yv , π), π) = 0
I define center manifold g : R× R 7→ R by: g(y , π) := wT (I − E ) Φ(yv + R(yv , π), π)
I partial derivatives at (0, π1) satisfy

gy = gyy = gπ = 0, gπy > 0, gyyy < 0 ⇒ pitchfork bifurcation at π = π1!

M. Golubitsky, I. Stewart, D. Schaeffer, “Singularities and Groups in Bifurcation Theory”, 2000
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Interpretation of the results.. as we vary π

Pitchfork bifurcation at: π1 = 1
1−λ1(L) , π2 = 1

1−λ2(L)

(norm.) linearization at 0:
−I + πH = −I + π(I − L)

× λ1(−I + π(I − L))
× λ2(−I + π(I − L))

structurally balanced structurally unbalanced

π < π1

π ∈ (π1, π2) π > π2

(small effort)

“right” commitment “overcommitment”

� no decision (deadlock)

� two (alternative) decisions � several decisions

19
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Interpretation of the results.. as we vary the frustration
Signed network G with frustration ε(G)

π1 = 1
1− λ1(L)

{
= 1 fixed, structurally balanced G
depends on ε(G), structurally unbalanced G

π2 = 1
1− λ2(L)

{
depends on algebraic connectivity, structurally balanced G
independent from ε(G), structurally unbalanced G
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Summary

I π1 = 1
1−λ1(L) grows with λ1(L)

I λ1(L) ≈ frustration
I the higher the frustration:

• the higher the social effort
needed to achieve a decision

• the smaller the interval for
which only two alternative
decisions exist

π1 π2

signed graph dynamical system

zero
frustration

low
frustration

high
frustration

π

eq
u
il
ib
ri
a

π

eq
u
il
ib
ri
a

π

eq
u
il
ib
ri
a
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Government formation in parliamentary democracies

22



Duration of government negotiation phase

Question: can we use our model to explain this behavior?
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Dynamics of the formation of a government
I signed network: parliament
I decision: vote of confidence of the parliament
I social effort: duration of the government negotiation phase

λ1(L) ∼ frustration + π1 ∼ duration of negotiations + π1 = 1
1−λ1(L)

⇒ duration of negotiations ∼ frustration

pitchfork bifurcation
π1 =

1
1−λ1(L) election day government is sworn in

signed graph dynamical system parliamentary network

low
frustration

high
frustration

π

eq
u
il
ib
ri
a

π1

π

eq
u
il
ib
ri
a

π1

negotiation time
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Frustration vs duration of government negotiations

Task: show that the government formation process is influenced
by the frustration of the parliamentary network

I Data: elections in 29 European countries (election years: 1978 - 2020)
I Method: Pearson’s correlation index (r), frustration vs duration of negotiations

Example: German elections

A. Fontan and C. Altafini, “A signed network perspective on the government formation process
in parliamentary democracies”, Scientific Reports, 2021
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Construction of the parliamentary networks

Definition: complete, undirected, signed graph in which each MP is a node

p1

p2

p3

p4

p5

p6

p7

party grouping
weight selection

MP=

all-against-all
collaboration: MPs belong to the same party

rivalry: MPs belong to different parties

unweighted:
aij ∈ {−1,+1}

26



Are the parliamentary networks structurally balanced?
p1

p2
Structurally balanced
parliamentary network

The parliamentary networks have (in general) nonzero frustration..

Energy landscape of the Italian parliamentary elections:
• = frustration

2
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Are the parliamentary networks structurally balanced?
p1

p2
Structurally balanced
parliamentary network

The parliamentary networks have (in general) nonzero frustration..

2
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Correlation for all 29 European countries
Duration of the government negotiations vs frustration of the parliamentary networks
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Coalitions and ideological differences in the networks

p1

p2

p3

p4

p5

p6

p7

party grouping

weight selection

MP=

pre-electoral coalitions
collaboration: MPs belong to the

same party or pre-electoral coalition
rivalry: otherwise

far left left center right far right

edges weights: “rile” index

rile

far left left center-left center center-rightright far right

edges weights: (optimized) left-right grid

optimized

“Rile” Data: Manifesto Project Database
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Correlation for all 29 European countries

Example:
Italian
elections

Results on
average correlation:
0.42, 0.32, 0.69
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Conclusion

Task: Study the decision-making process in a community of agents
where both cooperative and antagonistic interactions coexist

As we vary the social effort: pitchfork bifurcation behavior
I “right” commitment: 2 alternative decisions
I “overcommitment”: several (more than 2) alternative decisions

As we vary the frustration (i.e., amount of disorder) of the signed networks
I frustration influences the level of commitment required from the agents to reach a decision

Application: Government formation process
I frustration correlates well with duration of government negotiation phase
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