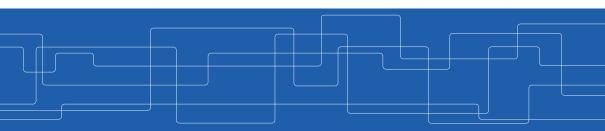


Collective decision-making on networked systems in presence of antagonistic interactions

Angela Fontan, angfon@kth.se Division of Decision and Control Systems KTH Royal Institute of Technology, Sweden

in collaboration with Prof. Claudio Altafini, Linköping University, Sweden



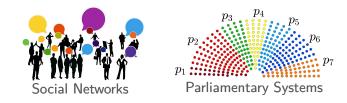
- Background Motivation and problem statement
- Signed networks
 Notions of structural balance and frustration
- Model for collective decision-making over signed networks Bifurcation analysis on structurally balanced and structurally unbalanced networks

Application

Process of government formation over signed "parliamentary networks"

 $\begin{array}{l} \mbox{Animal groups} \\ \Rightarrow \mbox{ decision reached through collaboration} \end{array}$

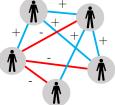
 $\begin{array}{l} \mbox{Animal groups} \\ \Rightarrow \mbox{ decision reached through collaboration} \end{array}$



 \Rightarrow both cooperative and antagonistic interactions may coexist

Background

Problem: collective decision-making in presence of antagonism

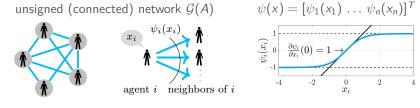


- 1. Signed networks
 - positive weight: cooperative interaction
 - negative weight: antagonistic interaction
- 2. Model for collective decision-making
 - x: vector of opinions
 - equilibrium points: possible decisions

Model for collective decision-making

$$\dot{x} = -\Delta x + \pi A \psi(x)$$

- *n* agents, $x \in \mathbb{R}^n$ vector of opinions
- "inertia" of the agents: $\Delta = \text{diag}\{\delta_1, \dots, \delta_n\}$, $\delta_i > 0$
- ▶ interactions between the agents:



and $\pi > 0$ scalar parameter

Gray et al, "Multiagent Decision-Making Dynamics Inspired by Honeybees", IEEE TCNS, 2018

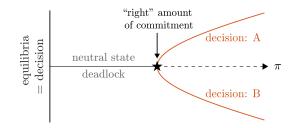
Model for collective decision-making

$$\dot{x} = -\Delta x + \pi A \psi(x)$$
 (*)

- ▶ $\pi =$ "social effort" or "strength of commitment" among the agents
- ► equilibria = decisions

Assumption: $\delta_i = \sum_j a_{ij} \Rightarrow L = \Delta - A$: Laplacian of $\mathcal{G}(A)$

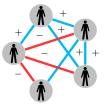
Task: Study qualitative behavior of (\star) as social effort parameter π is varied



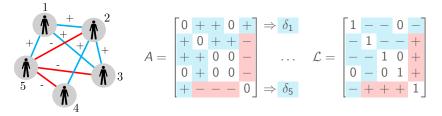
Task: Study the decision-making process in a community of agents where both cooperative and antagonistic interactions coexist

Model: $\dot{x} = -\Delta x + \pi A \psi(x)$

Assumptions: $\mathcal{G}(A)$ is signed, π : "social effort" between the agents



Signed networks and signed Laplacian matrix



Signed Laplacian:

$$L = \Delta - A$$

$$\Delta = \operatorname{diag}\{\delta_1, \dots, \delta_n\}: \ \delta_i = \sum_{j=1}^n |\mathbf{a}_{ij}| > 0 \quad \forall i$$

$$\Lambda(\mathcal{L}) = \operatorname{spectrum of } \mathcal{L}$$

Focus on:

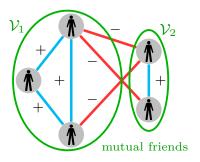
normalized signed Laplacian: $\mathcal{L} = I - \Delta^{-1}A$

Structural balance

A connected signed graph is structurally balanced if $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$ s.t. every edge:

- between \mathcal{V}_1 and \mathcal{V}_2 is negative
- within \mathcal{V}_1 or \mathcal{V}_2 is positive

It is structurally unbalanced otherwise



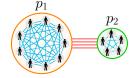
F. Harary, "On the notion of balance of a signed graph", Michigan Mathematical Journal, 1953

Example: Parliamentary systems

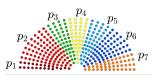
Structurally balanced network

tot government seats

tot opposition

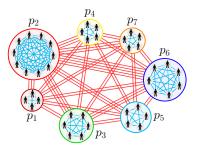


Structurally unbalanced network



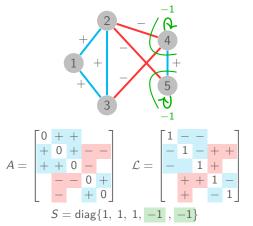
tot government seats

tot opposition



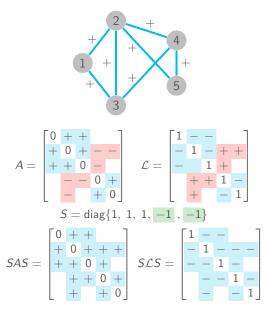
$\mathcal{G}(A)$ connected signed graph is structurally balanced iff

1. \exists signature matrix $S = \text{diag}\{s_1, \dots, s_n\}, s_i = \pm 1, \text{ s.t.}$ $S\mathcal{L}S$ has all nonpositive off-diagonal entries ($SAS \ge 0$)



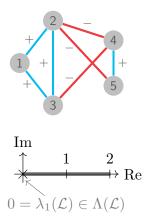
$\mathcal{G}(A)$ connected signed graph is structurally balanced iff

1. \exists signature matrix $S = \text{diag}\{s_1, \dots, s_n\}, s_i = \pm 1, \text{ s.t.}$ $S\mathcal{L}S$ has all nonpositive off-diagonal entries ($SAS \ge 0$)



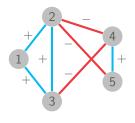
$\mathcal{G}(A)$ connected signed graph is structurally balanced iff

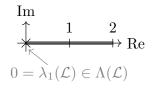
- 1. \exists signature matrix $S = \text{diag}\{s_1, \dots, s_n\}, s_i = \pm 1, \text{ s.t.}$ $S\mathcal{L}S$ has all nonpositive off-diagonal entries ($SAS \ge 0$)
- 2. $\lambda_1(\mathcal{L}) = 0$



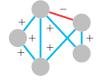
$\mathcal{G}(A)$ connected signed graph is structurally balanced iff

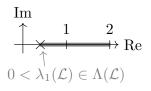
- 1. \exists signature matrix $S = \text{diag}\{s_1, \dots, s_n\}, s_i = \pm 1, \text{ s.t.}$ $S\mathcal{L}S$ has all nonpositive off-diagonal entries ($SAS \ge 0$)
- 2. $\lambda_1(\mathcal{L}) = 0$





 $\Rightarrow \mathcal{G}(A) \text{ connected signed graph}$ is structurally unbalanced iff $\lambda_1(\mathcal{L}) > 0$





Frustration index and algebraic conflict

Task: characterize the graph distance from structurally balanced state

Frustration index and algebraic conflict

 $\textbf{Task:} \ characterize \ the \ graph \ distance \ from \ structurally \ balanced \ state$

Frustration Index

(computation: NP-hard problem)

$$\boldsymbol{\epsilon}(\mathcal{G}) = \min_{\substack{S = \text{diag}\{s_1, \dots, s_n\}\\ s_i = \pm 1}} \underbrace{\frac{1}{2} \cdot \sum_{i \neq j} \left[|\mathcal{L}| + S\mathcal{L}S]_{ij}}_{=\boldsymbol{e}(S): \text{ "energy functional"}} \right]_{ij}$$

Frustration index and algebraic conflict

Task: characterize the graph distance from structurally balanced state

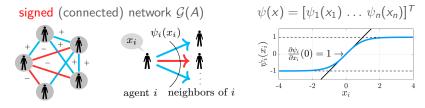
- ► Frustration Index (computation: NP-hard problem) $\boldsymbol{\epsilon}(\mathcal{G}) = \min_{\substack{S = \text{diag}\{s_1, \dots, s_n\}\\ s_i = \pm 1}} \frac{1}{2} \cdot \sum_{i \neq j} \left[|\mathcal{L}| + S\mathcal{L}S \right]_{ij}$ =e(S): "energy functional" 0.8 $(\mathfrak{Y}^{0.6}_{4})$ $\lambda_1(\mathcal{L})$ good approximation of $\epsilon(\mathcal{G})$ 0.20 50100150200 2500 $\epsilon(\mathcal{G})$
- Algebraic Conflict

$$\xi(\mathcal{G}) = \lambda_1(\mathcal{L})$$

Model for collective decision-making over signed networks

$$\dot{x} = -\Delta x + \pi A \psi(x)$$

- *n* agents, $x \in \mathbb{R}^n$ vector of opinions
- ▶ "inertia" of the agents: $\Delta = \text{diag}\{\delta_1, \dots, \delta_n\}$, $\delta_i > 0$
- ▶ interactions between the agents:



and $\pi > 0$ "social effort" (or "strength of commitment")

A. Fontan and C. Altafini, "The role of frustration in collective decision-making dynamical processes on multiagent signed networks", IEEE TAC, 2022

Dynamical interpretation of structural balance

$$\dot{x} = -\Delta x + \pi A \psi(x) = \Delta \left(-x + \pi \underbrace{\Delta^{-1} A}_{:=H} \psi(x) \right) \qquad (\star)$$

"Laplacian" assumption: $\delta_i = \sum_j |a_{ij}| > 0 \ \forall i \Rightarrow \mathcal{L} = I - H$

Then at the origin for $\pi = 1$:

Jacobian:
$$J = -L = \Delta(-\mathcal{L})$$

and

(*) is monotone
$$\Leftrightarrow \mathcal{G}(A)$$
 is structurally balanced $\Leftrightarrow \lambda_1(\mathcal{L}) = 0$

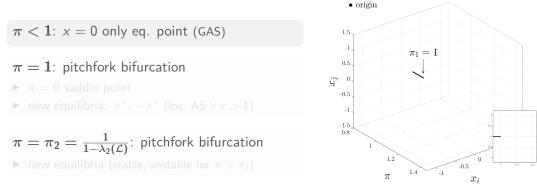
$$\dot{x} = -\Delta x + \pi A \psi(x) = \Delta (-x + \pi H \psi(x)) \qquad (\star)$$

Investigate how:

- the social effort parameter π affects the existence and stability of the equilibrium points of the system (*)
 Tool: bifurcation theory (L = I H has simple eigenvalues)
- ► the presence of antagonistic interactions affects the behavior of (*) Tool: signed networks theory (frustration)

Bifurcation analysis: structurally balanced networks

$$\dot{x} = \Delta(-x + \pi H\psi(x)), \quad x \in \mathbb{R}^n$$

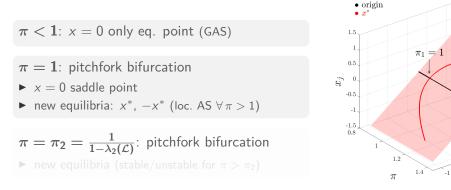


Bifurcation diagram

A. Fontan and C. Altafini, "Multiequilibria analysis for a class of collective decision-making networked systems", IEEE TCNS, 2018

Bifurcation analysis: structurally balanced networks

$$\dot{x} = \Delta(-x + \pi H\psi(x)), \quad x \in \mathbb{R}^n$$



Bifurcation diagram

 π_2

-0.5

 x_i

A. Fontan and C. Altafini, "Multiequilibria analysis for a class of collective decision-making networked systems", IEEE TCNS, 2018

Bifurcation analysis: structurally balanced networks

$$\dot{x} = \Delta(-x + \pi H\psi(x)), \quad x \in \mathbb{R}^n$$

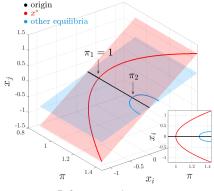
$$\pi < 1: x = 0 \text{ only eq. point (GAS)}$$

$$\pi = 1: \text{ pitchfork bifurcation}$$

$$\star = 0 \text{ saddle point}$$

$$\star = \pi_2 = \frac{1}{1 - \lambda_2(\mathcal{L})}: \text{ pitchfork bifurcation}$$

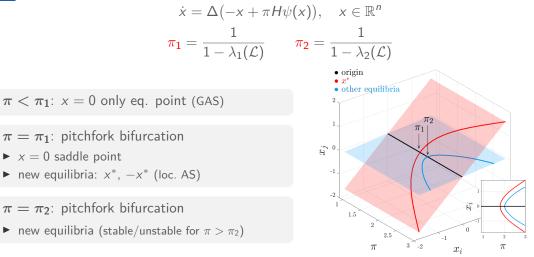
$$\star = \pi_2 = \frac{1}{1 - \lambda_2(\mathcal{L})}: \text{ pitchfork bifurcation}$$



Bifurcation diagram

A. Fontan and C. Altafini, "Multiequilibria analysis for a class of collective decision-making networked systems", IEEE TCNS, 2018

Bifurcation analysis: structurally unbalanced networks



Bifurcation diagram

A. Fontan and C. Altafini, "The role of frustration in collective decision-making dynamical processes on multiagent signed networks", IEEE TAC, 2022.

Sketch of the proof: first bifurcation

Theorem

Assuming:

- ► S-shaped ψ : $\forall i \ \psi_i$ is odd, saturated, sigmoidal, monotonically increasing with $\frac{\partial \psi_i}{\partial x_i}(0) = 1$
- $\lambda_1(\mathcal{L}) > 0$ simple

Then:

$$x^* \neq 0$$
 is equilibrium point of $\iff \pi > \pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})}$
 $\dot{x} = \Delta \left(-x + \pi H \psi(x) \right)$

Sketch of the proof: first bifurcation

Theorem

Assuming:

S-shaped ψ: ∀i ψ_i is odd, saturated, sigmoidal, monotonically increasing with ∂ψ_i/∂x_i(0) = 1
 λ₁(L) > 0 simple

Then:

 $\begin{aligned} x^* \neq 0 \text{ is equilibrium point of} & \iff & \pi > \pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})} \\ \dot{x} = \Delta \left(-x + \pi H \psi(x) \right) \end{aligned}$

Proof: Sufficiency $[x = 0 \text{ is GAS when } \pi \leq \pi_1]$ Lyap. function $V : \mathbb{R}^n \to \mathbb{R}_+$, $V(x) = \sum_i \int_0^{x_i} \psi_i(s) ds \geq 0$ (radially unbounded)

$$\begin{split} \dot{V}(x) &= \psi(x)^{T} \dot{x} = -\underbrace{\psi(x)^{T} \Delta x}_{>\psi(x)^{T} \Delta x} + \underbrace{\psi(x)^{T} \Delta (\pi H)}_{=\Delta^{\frac{1}{2}} (\pi \Delta^{\frac{1}{2}} H \Delta^{-\frac{1}{2}}) \Delta^{\frac{1}{2}}} \\ &< -\psi(x)^{T} \Delta^{\frac{1}{2}} \underbrace{\left(I - \pi \Delta^{\frac{1}{2}} H \Delta^{-\frac{1}{2}}\right)}_{\text{symmetric, psd}} \Delta^{\frac{1}{2}} \psi(x) \leq 0 \quad \forall x \neq 0 \end{split}$$

Sketch of the proof: first bifurcation

Proof: Necessity [pitchfork bifurcation when $\pi = \pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L})} = \frac{1}{\lambda_n(H)}$]

$$\Phi(x,\pi) = -x + \pi H \psi(x) = 0, \quad \mathbf{J} := \frac{\partial \Phi}{\partial x}(0,\pi_1) = -I + \pi_1 H$$

Lyapunov-Schimdt reduction:

▶ v (right), w (left) eigenvectors of J relative to $0 \Rightarrow \frac{E = I - vw^T : \mathbb{R}^n \to \text{range}(J)}{I - E : \mathbb{R}^n \to \text{ker}(J)}$

► split
$$x = yv + r$$
, $y \in \mathbb{R}$ and $r = Ex \Rightarrow$ near $(0, \pi_1)$:
$$\begin{cases} 0 = E \Phi(yv + r, \pi) \\ 0 = (I - E) \Phi(yv + r, \pi) \end{cases}$$

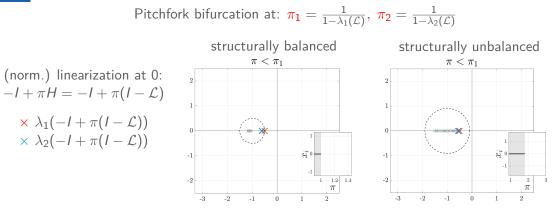
- ▶ implicit function theorem: $\exists ! r = R(yv, \pi) : E \Phi(yv + R(yv, \pi), \pi) = 0$
- define center manifold $g : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ by: $g(y, \pi) := w^T (I E) \Phi(yv + R(yv, \pi), \pi)$
- partial derivatives at $(0, \pi_1)$ satisfy

 $g_y = g_{yy} = g_{\pi} = 0, \ g_{\pi y} > 0, \ g_{yyy} < 0 \quad \Rightarrow \quad \text{pitchfork bifurcation at } \pi = \pi_1!$

M. Golubitsky, I. Stewart, D. Schaeffer, "Singularities and Groups in Bifurcation Theory", 2000

KTH VETENSKAP OCH KONST

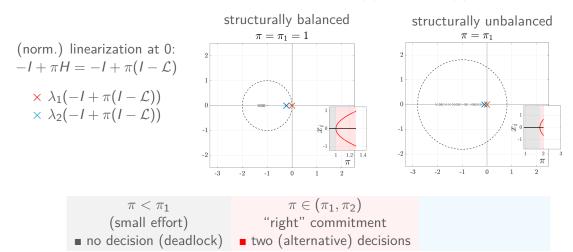
Interpretation of the results.. as we vary $\boldsymbol{\pi}$



 $\pi < \pi_1$ (small effort)
 \blacksquare no decision (deadlock)

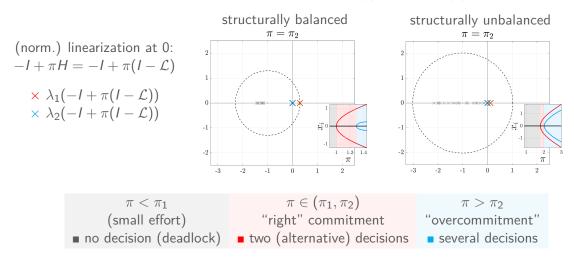
Interpretation of the results.. as we vary $\boldsymbol{\pi}$

Pitchfork bifurcation at:
$$\pi_1 = \frac{1}{1-\lambda_1(\mathcal{L})}, \ \pi_2 = \frac{1}{1-\lambda_2(\mathcal{L})}$$



Interpretation of the results.. as we vary $\boldsymbol{\pi}$

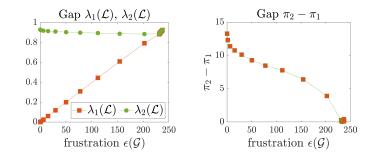
Pitchfork bifurcation at:
$$\pi_1 = \frac{1}{1-\lambda_1(\mathcal{L})}, \ \pi_2 = \frac{1}{1-\lambda_2(\mathcal{L})}$$



Interpretation of the results.. as we vary the frustration

Signed network ${\mathcal G}$ with frustration $\epsilon({\mathcal G})$

$$\begin{split} \pi_{1} &= \frac{1}{1 - \lambda_{1}(\mathcal{L})} \begin{cases} = 1 \text{ fixed}, & \text{structurally balanced } \mathcal{G} \\ \text{depends on } \epsilon(\mathcal{G}), & \text{structurally unbalanced } \mathcal{G} \end{cases} \\ \pi_{2} &= \frac{1}{1 - \lambda_{2}(\mathcal{L})} \begin{cases} \text{depends on algebraic connectivity, } & \text{structurally balanced } \mathcal{G} \\ \text{independent from } \epsilon(\mathcal{G}), & \text{structurally unbalanced } \mathcal{G} \end{cases}$$



SIGNED GRAPH DYNAMICAL SYSTEM

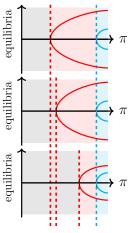
• $\pi_1 = \frac{1}{1-\lambda_1(\mathcal{L})}$ grows with $\lambda_1(\mathcal{L})$

- $\lambda_1(\mathcal{L}) \approx \text{frustration}$
- ► the higher the frustration:
 - the higher the social effort needed to achieve a decision
 - the smaller the interval for which only two alternative decisions exist

frustration low frustration

zero

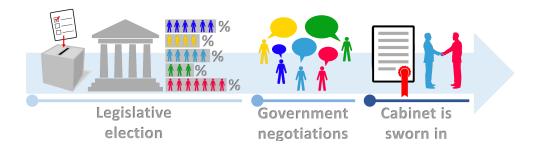
high frustration



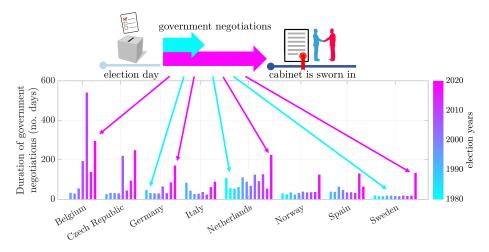
 π_1

 π_2

Government formation in parliamentary democracies



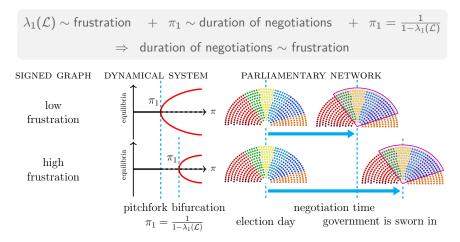
Duration of government negotiation phase



Question: can we use our model to explain this behavior?

Dynamics of the formation of a government

- ► signed network: parliament
- decision: vote of confidence of the parliament
- ► social effort: duration of the government negotiation phase

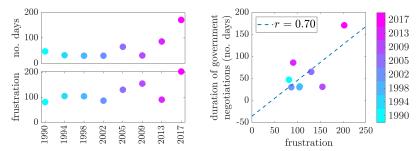


Frustration vs duration of government negotiations

Task: show that the government formation process is influenced by the frustration of the parliamentary network

- ▶ Data: elections in 29 European countries (election years: 1978 2020)
- Method: Pearson's correlation index (r), frustration vs duration of negotiations

Example: German elections



A. Fontan and C. Altafini, "A signed network perspective on the government formation process in parliamentary democracies", Scientific Reports, 2021

Construction of the parliamentary networks

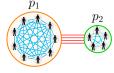
 $\ensuremath{\textbf{Definition:}}$ complete, undirected, signed graph in which each MP is a node

PARTY GROUPING

 $p_{2} \xrightarrow{p_{3}} p_{4} \xrightarrow{p_{5}} p_{6} \xrightarrow{p_{7}} p_{7} \xrightarrow{p_{7}} p_{7} \xrightarrow{p_{7}} p_{6} \xrightarrow{p_{7}} p_{6} \xrightarrow{p_{7}} p_{7} \xrightarrow{p_{7}} p_{6} \xrightarrow{p_{7}} p_{7} \xrightarrow{p_{7}} p_{7} \xrightarrow{p_{7}} p_{6} \xrightarrow{p_{7}} p_{7} \xrightarrow{p_{7}} p_{7$

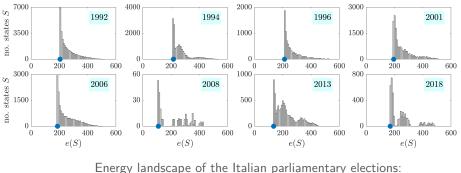
collaboration: MPs belong to the same party rivalry: MPs belong to different parties

Are the parliamentary networks structurally balanced?



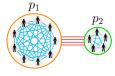
Structurally balanced parliamentary network

The parliamentary networks have (in general) nonzero frustration..



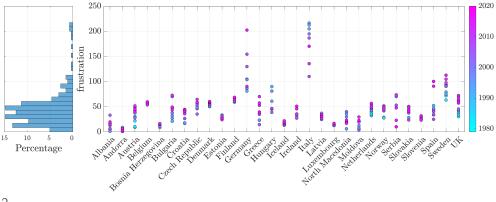
• = frustration

Are the parliamentary networks structurally balanced?



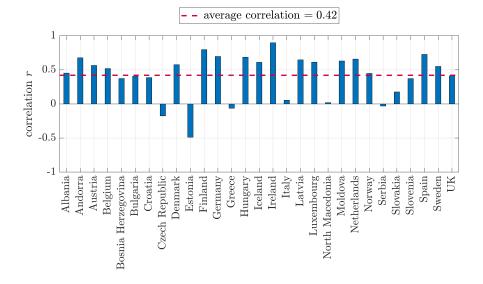
Structurally balanced parliamentary network

The parliamentary networks have (in general) nonzero frustration..

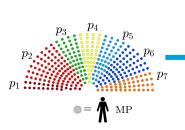


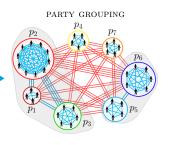
Correlation for all 29 European countries

Duration of the government negotiations vs frustration of the parliamentary networks



Coalitions and ideological differences in the networks





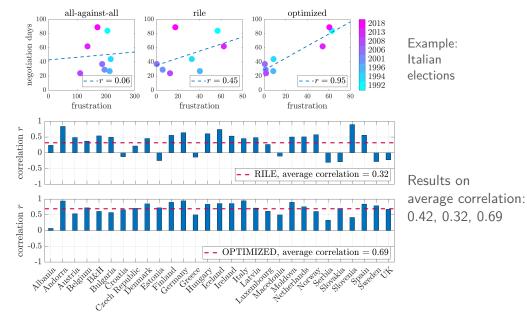
WEIGHT SELECTION

far left left center-left center-right right far right deges weights: (optimized) left-right grid

PRE-ELECTORAL COALITIONS collaboration: MPs belong to the same party or pre-electoral coalition rivalry: otherwise

[&]quot;Rile" Data: Manifesto Project Database

Correlation for all 29 European countries



Task: Study the decision-making process in a community of agents where **both cooperative and antagonistic interactions coexist**

As we vary the social effort: pitchfork bifurcation behavior

- ▶ "right" commitment: 2 alternative decisions
- ▶ "overcommitment": several (more than 2) alternative decisions

As we vary the frustration (i.e., amount of disorder) of the signed networks

► frustration influences the level of commitment required from the agents to reach a decision

Application: Government formation process

▶ frustration correlates well with duration of government negotiation phase

Thanks!

Angela Fontan

angfon@kth.se
https://www.kth.se/profile/angfon
https://angelafontan.github.io/