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Motivating examples

Problem: Study the properties of Laplacian pseudoinverses

Motivation:
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Laplacian pseudoinverses of unsigned networks

The Laplacian L of an unsigned graph G(A) with n nodes is:

i,j=1,...,n

1y = { oo T2
— Q4 , JFi

for each 0.8 —0.7 —0.1 1
edge (j,i): = L=]-03 09 —06|, L |:|=L1=0
ai; >0 —0.5 —0.2 0.7 )

and Re(\) > 0 for all A € sp(L)
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Laplacian pseudoinverses of unsigned networks

The Laplacian L of an unsigned graph G(A) with n nodes is:

3
A
”\)\307 Wi

2

[L}ij:{z:j—laija =1 i,jzl,...,n

—Gij, J#i
for each 0.8 —0.7 —0.1 1
edge (j,i): = L=]-03 09 —06|, L |:|=L1=0
ai; >0 —0.5 —0.2 0.7 )

and Re(\) > 0 for all A € sp(L)

Focus on: LT = Moore-Penrose pseudoinverse of L
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Properties of Laplacian pseudoinverses of unsigned networks

Which properties of the graph Laplacian L does the Laplacian pseudoinverse LT satisfy?
m 0 is eigenvalue of LT

m BUT LT is NOT an M-matrix*

3 0.8 —0.7—-0.1 0.77 0.05 —0.82
LT L=|-0.7 09 —02 L' = 0.05 0.63 —0.68
1 0.2 —0.1-0.2 0.3 —0.82 —0.68 1.50
K(J.7§‘~lf
2 sp(L) = {0,0.44,1.56} sp(LT) = {0,0.64,2.26}

= L' is NOT a Laplacian matrix...

*M-matrix = nonpositive off-diagonal elements + eigenvalues with nonnegative real part
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Properties of Laplacian pseudoinverses of unsigned networks

... but L' still obeys to a strong Perron-Frobenius property:
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Properties of Laplacian pseudoinverses of unsigned networks

... but L' still obeys to a strong Perron-Frobenius property:
m 0 is the “dominant” eigenvalue of —Lf

= 1>0and ¢ >0 with LT¢ = (LHT1 =0

1
0,1,8) 1, 0.77 0.05 —0.82
L' =005 0.63 —0.68
—0.82 —0.68 1.50
Re
sp(— L") = {~2.26,-0.64,0}
sp(—L1) L'l =(LH"1=0
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Properties of Laplacian pseudoinverses of unsigned networks

The Laplacian pseudoinverse is in a general a signed Laplacian, and:
m 0 is eigenvalue of Lt

= LT and (LT)T obey to a Perron-Frobenius property

By 3
{0.77 0.05 —0.82] & 1" signed graph
L' =005 0.63 —0.68 1 0.68 associated
—0.82 —0.68 1.50 ‘30_05 with Lt
Re 2
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Properties of Laplacian pseudoinverses of unsigned networks

The Laplacian pseudoinverse is in a general a signed Laplacian, and:
m 0 is eigenvalue of Lt

= LT and (LT)T obey to a Perron-Frobenius property

By 3
{0.77 0.05 —0.82] & 1" signed graph
L' =005 0.63 —0.68 1 0.68 associated
—0.82 —0.68 1.50 ‘30_05 with Lt
Re 2

Can these properties be extended to signed Laplacians,
i.e., Laplacians associated to signed graphs?
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Signed Laplacian matrix

The signed Laplacian L of a signed graph G(A) with n nodes is:

[L]ij = { Yoy iy J =1

—Qij,
Properties:
m0esp(l): L1=0

JFi

ij=1,...

m L need NOT be diagonally dominant nor an M-matrix

~+
(I' for each
edge (j. i)
x aij S0
l/

g k™~

L=

0O +1 0 -1 0
0 =2 +1 0 +1
0 0 +#1 -1 0
-1 +1 0 +1 -1

-1 0

0 0 +1

Im

sp(L)

Re
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Why signed networks?

- =(% —+>>

+
social networks: electrical networks: signed network:
friends/enemies positive /negative cooperative/antagonistic
conductance of resistor interactions
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Problem formulation

Problem: Study the algebraic properties of Laplacian pseudoinverses

Task: Find a class of (signed) Laplacian matrices that:
= has most of the properties of M-matrices

® strong Perron-Frobenius property
® cigenvalues with nonnegative real part

m is closed with respect to pseudoinversion
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Eventually exponentially positive (EEP) Laplacians

Let L be a signed Laplacian

—L is eventually exponentially positive: Jtg € Ns.t. e7L* >0 forall t > ¢

23 0 1 -33 0.12 0.28 0.52 0.08

4
/ \‘\} o 72121 0 0 | ;5 |0.080270560.10
1 3 |0 -12 06 06 | ~ |0.06 0.25 0.55 0.14
\‘ /‘ 3 08 —3.3-05 0.12 0.26 0.48 0.14
2

C. Altafini, “Investigating stability of Laplacians on signed digraphs via eventual positivity”, IEEE 58th CDC, 2019.
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Eventually exponentially positive (EEP) Laplacians

Let L be a signed Laplacian

—L is eventually exponentially positive: Jtg € Ns.t. e7L* >0 forall t > ¢

<= —L and —L” obey to a strong Perron-Frobenius property

23 0 1 -33 0.12 0.28 0.52 0.08

4
\_/ \‘\} L_|2t21 0o o 15 _ |0.08 0.27 0.56 0.10
1 3 1l 0o -12 06 06| ~ 10.06 0.25 0.55 0.14
\ /\ 3 08 —3.3-05 0.12 0.26 0.48 0.14
2 sp(

—L) = {—3.4,—0.6 £43.6,0} and L1 = LT¢ =0, ¢ =[0.13 0.42 0.87 0.20]”

C. Altafini, “Investigating stability of Laplacians on signed digraphs via eventual positivity”, IEEE 58th CDC, 2019.
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Eventually exponentially positive (EEP) Laplacians

Let L be a signed Laplacian

—L is eventually exponentially positive: Jtg € Ns.t. e7L* >0 forall t > ¢
<= —L and —L” obey to a strong Perron-Frobenius property
= —L is marginally stable of corank 1 (“<=", if L is weight balanced L1 = LT1 = 0)

23 0 1 -33 0.12 0.28 0.52 0.08

4
\_/ \‘\} L_|2t21 0o o 15 _ |0.08 0.27 0.56 0.10
1 3 1l 0o -12 06 06| ~ 10.06 0.25 0.55 0.14
\ /\ 3 08 —3.3-05 0.12 0.26 0.48 0.14
2 sp(

—L) = {—3.4,—0.6 £43.6,0} and L1 = LT¢ =0, ¢ =[0.13 0.42 0.87 0.20]”

C. Altafini, “Investigating stability of Laplacians on signed digraphs via eventual positivity”, IEEE 58th CDC, 2019.
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Is the class of EEP Laplacians closed w.r.t. pseudoinversion?

Let L be a weight balanced signed Laplacian: L1 = L1 = 0 (<= L' weight balanced)

—L is eventually exponentially positive

<= — L is eventually exponentially positive

<= —L' is marginally stable of corank 1

0.15 0 0 —0.15
—-0.23 0.15 0.15 —-0.07

L=1001 —012 —003 014
0.07 —0.03 —0.12 0.08
L1=LT1=0
_L EEP

sp(—L) = {—0.17,—-0.09 £ i0.2,0}

2.25 —1.86 —0.22 —0.17
—1.60 1.51 —5.67 5.75
2.10 0.55 4.44 —-7.09
—2.75 —0.20 1.45 1.50

L1 =(HT1=0
—L' EEP
sp(—L") = {~5.92, —1.89 + i4.24,0}

Lt =

II LINKOPING
@ UNIVERSITY



Is the class of EEP Laplacians closed w.r.t. symmetrization?

Let L be a normal signed Laplacian: LLT = LTL (<= L' normal)

—L is eventually exponentially positive

T
<= L, = L is positive semidefinite of corank 1

LT+(LT)T
2

— Li:= is positive semidefinite of corank 1

L=|-509 113 3.96

3.96 —5.09 1.13
normal, —L EEP, sp(L) = {0,1.7 £ 7.8}
L1=L"1=0

1.13  3.96 —5.09‘|

L, =

1.13 —-0.57 —0.5
—0.57 1.13 —-0.57

—0.57 —0.57 1.13

sp(Ls) = {0,1.7,1.7}

L1=0
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Application: Electrical networks
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Application: Electrical networks

. . 1
Electrical network = G(A) with A = [ai;] = s etweon T ond 5
/ be=e \
graph current injected
Laplacian into each node,
electric potentials cT'1=0
at nodes

— u=Llc+al, a€R

>0
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Application: Electrical networks

Electrical network = G(A) with A = [a;5] =

1

- > ()

/ br=e S
graph current injected
Laplacian into each node,
electric potentials cT'1=0
at nodes

= u=Llct+al, aeR

If ¢, =41, ¢; = —1 (ie., c = e; — ¢;) then:

effective resistance

=R.. = (e.—e VT LT(e;—e.
between ¢ and j = Rij = (ei=e;)" Ll(ei—e;) 2 0

resistance between i and j
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Application: Electrical networks

Electrical network = G(A) with A = [a;5] = .

resistance between 7 and j —

If signed Laplacian L is normal and —L is EEP then

R;; = effective resistance between ¢ and j
= (ei —e;)"L(e; — ¢))

)T LT + (LT)T

=(ei—¢; 5 (e: —¢j)

positive semidefinite

= Rij is well-defined : Rij >0, Rij = Rji v %]

<0

C; U
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Conclusion

Problem: Study the algebraic properties of Laplacian pseudoinverses

Class of eventually exponentially positive (EEP) Laplacians is closed

if L is weight balanced, w.r.t.:

* pseudoinversion: —L EEP <= —L' EEP

* “stability”: —L EEP <= —L, —L" marginally stable (corank 1)
if L is normal, w.r.t.:

LT+(LT)T
2

® symmetrization: —L EEP <= #, positive semidefinite (corank 1)

Application: Electrical networks
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Thank you!

On the properties of
Laplacian pseudoinverses

Angela Fontan and Claudio Altafini
angela.fontan@liu.se, claudio.altafini®@liu.se

www.liu.se
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