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Abstract1

The random utility model (RUM) is a fundamental notion in studies of human2

choices between risky options, pursued primarily within behavioural economics. The3

explanatory power of RUM however is undermined by the case-dependence of the4

choice function’s free parameter. We address this limitation by contextualising util-5

ities based on the concept of divisive normalisation, well-established in neural com-6

putation studies of decision-making. We derive a new model, the contextualised7

RUM (cRUM), with a new choice parameter β that linearly scales the normalised,8

rather than the raw, utility. The consequence, setting cRUM apart from RUM, is the9

independence of β on case-specific prospects, thereby facilitating predictions across10

experimental settings. We demonstrate that the cRUM prediction of variable fram-11

ing effect among decision-makers in neuroeconomics studies aligns with the observed12

experimental data (with no meaningful difference between the medians). Moreover,13

12 prospect choice experiments are predicted with cRUM yielding good agreement14

with true target labels particularly for gain/loss prospects (Pearson’s correlation in15

the range of 0.70–0.95). Our results strongly suggest that cRUM strengthens the16

predictive capabilities of RUM, while providing a novel characterisation of the choice17

function in the neuro-cognitive context.18
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Introduction19

Predicting human choices is a challenging problem with implications well beyond beha-20

vioural economics [1, 2, 3, 4, 5]. Making a choice between alternatives with valued, still21

uncertain, outcomes (prospects) is expected to maximise the utility, typically expressed22

in monetary units, for the decision-maker. Predicting economic decisions in general and23

prospect choices in particular must somehow combine exogenous variables that are ob-24

servable and endogenous (internal or latent) variables that are not directly observable and25

vary among decision-makers. In the classical formulation of random utility theory [6, 7],26

the utility of a prospect choice depends on both exogenous and endogenous variables, the27

latter typically represented as random variables and associated with bias or bounded ra-28

tionality (subjectivity) [8]. Combining random utility theory with prospect theory (PT)29

[9] to define utilities (subjective valuations) yields a common form of the random utility30

model (RUM), which lends itself to predicting choice probability in an experimental set-31

ting [10]. Even though PT has introduced several robust variables for quantifying biases32

in subjective valuations, the predictive power of RUM is limited by the need to calibrate a33

free parameter of the choice function weighing the utilities [11, 12, 13, 14, 10], denoted here34

as β, on a set of observed choices for context-specific outcomes. The model can then only35

be applied in settings with comparable outcomes [10], i.e., it does not generalise beyond36

the given context. The variety of nomenclature used in the literature for the free calibra-37

tion parameter in RUM (e.g., “rationality parameter”, see Supplementary Information for38

diverse nomenclature used in the literature) indicates that β is understood as an endo-39

genous parameter, yet in the canonical RUM formulation β is explicitly dependent on the40

magnitude of the utilities, i.e., on exogenous variables. The ambiguity of β dependence on41

exogenous and endogenous variables in RUM limits its applicability: predictions can only42

be made in settings where prospect choices have already somehow been explored facilit-43

ating case-specific β calibration. We argue that separation of exogenous and endogenous44

variables is imperative, not only for improving predictability of economic choices [8], but45

also for their interpretability.46

To address this challenge we propose a novel modelling framework built on contextual-47

isation of the RUM choice function, hence called contextualised RUM (cRUM). We define48

cRUM using a variant of the so-called divisive normalisation [15], which yields a new form49

of the parameter β of the choice function, referred to here as the choice (or control) para-50

meter. Crucially, this new choice parameter should facilitate better predictions of prospect51

choices: in the cRUM framework β does not explicitly depend on the prospect utilities, as52

in the classical RUM formulation, and thus is considered endogenous.53
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Our main goal is to validate the predictability of cRUM in two consecutive steps,54

which consider independent data on discrete choice experiments and different types of55

experimental settings. In the first step, we consider discrete choice experiments exploring56

variability of choice probability among decision-makers in a population. In the cRUM57

framework this means that β as an endogenous parameter should vary among decision-58

makers in a population. In the second step, we consider discrete choice experiments across59

a population where choice probabilities are reported in the form of aggregated information60

across decision-makers. In the cRUM framework this means that even though β is expected61

to vary among decision-makers its mean, here interpreted as population-representative62

value, mean should model aggregated choices in a population of decision-makers.63

This manuscript first introduces the novel model cRUM from RUM. The cRUM formu-64

lation strengthens the theoretical link between behavioural economics and psychology as65

well as sociology through the TPB framework, opening for validation and characterisation66

of the choice parameter β, in ways not attempted before. The proposed line of reasoning,67

in combination with human-social probability perception evidence, in particular percep-68

tual numerosity experimental data and data on social perception of risk/unlikely events, is69

used in the paper to infer a stochastic model for β. We claim that a stochastic model for70

β in cRUM can capture variability of observed choice probability among a population of71

decision-makers. Moreover, we posit that cRUM can also predict observed choice probabil-72

ity across decision-makers and experimental settings in the simplified case where the mean73

of the β distribution is considered as a population-representative value. The cRUM with74

the proposed model for β is then tested, first showing that the stochastic model for β re-75

produces well the observed variability in experimental studies on variability of the framing76

effect in a population, and then illustrating a reasonably robust generalisation of β across77

experiments on the broadest set of prospect choice experimental data ever considered in a78

single study (to our best knowledge).79

Results80

From RUM to cRUM, a socio-psychological and neurobiological interpreta-81

tion. The contextualisation proposed in cRUM suggests an overall structure consistent82

with the theory of planned behaviour (TPB) developed in the socio-psychological context83

[16]. Moreover, the proposed cRUM with divisive normalisation can be related to neural84

computations and thus interpreted in the neurocognitive domain [17].85

The central notion of TPB is behavioural intention, which precedes overt behaviour or86

action; the expression overt behaviour ∼ behavioural intention implies a probabilistic rela-87
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tionship between valuations of options and choice in line with the S-shaped choice function88

in behavioural economics [10]. TPB asserts that behavioural intention, and consequently89

behaviour, is driven by three factors: attitude (utility resulting in a preference), perceived90

control (subjective evaluation of one’s ability to achieve assessed utility by choosing a be-91

haviour), and social factors. Human behaviour and prospect choices ultimately depend92

on valuation, i.e., appraisal of outcomes [6, 18, 8], to form an attitude toward alternative93

options [16]. Using the TPB framework, we can provide a comprehensive illustration of the94

concept of cRUM, building upon the foundation of RUM. Let PA denote the probability95

of choosing prospect A over prospect B, and let VA and VB denote the raw utilities associ-96

ated with A and B, respectively (Methods and Supplementary Information for details). In97

RUM, the “strong utility” or “Fechner choice function” defines PA = F (VA−VB), where F (·)98

is an S-type function, e.g., Sigmoid or Logit, yielding PA =
(
1+exp(−β(VA−VB))

)−1, and99

β is the free calibration parameter [11, 12, 13, 14, 10]. The novel model cRUM proposes100

a new method for computing the choice probability PA and a context-independent choice101

parameter β, which does not depend on the utilities VA and VB. Fig. 1 (and Supplementary102

Fig. 1) illustrates how the cRUM can be set in the TPB framework. It starts from input103

information through valuation of outcomes to intention and, finally, probability of choosing104

one option over the other. The normalisation of utilities to define attitudes toward options105

A and B, i.e, ζA = VA/Vn and ζB = VB/Vn (with Vn = |VA| + |VB|), plays a central role106

in cRUM (Fig. 1): cRUM can be seen as an extension of the RUM with Fechner choice107

function that accounts for the contextualisation of valuation. The normalised utilities are108

then used to define the intention of a decision-maker to choose A over B, i.e., β(ζA − ζB),109

which operationalises the TPB framework of cRUM (eq. (1) and Methods for a detailed110

explanation).111

The normalisation of outcomes is consistent with the finite representational bandwidth112

of the human brain that adapts the neural code to the range of outcome values in a given113

context; thereby adjusting the dynamic range so that all potential outcome values are114

mapped to the same range of the representative neural activity [15, 17, 19]. Although dif-115

ferent normalisations such as average outcome variance [14, 20], absolute distance between116

value distributions [21], or difference between maximum and minimum outcome values [19]117

have been considered, our study is the first time to the best of our knowledge that a norm-118

alisation is proposed for prospect choices consistently with divisive normalisation reported119

in neurobiological studies. The divisive normalisation is considered as a canonical neural120

computation applied by the brain to make neural representations more effectively account121

for the encoded information about sensory input or higher-order mental constructs. Unsur-122
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prisingly, divisive normalisation has been reported to provide parsimonious explanation for123

complex phenomena in perceptual and cognitive studies, particularly when neural activity124

at different levels of brain organisation is dependent on the context, i.e., other sources of125

information or inputs, than the input of interest [22]. The notion of contextualisation is126

central to cognitive processes with decision-making as a primary representative [15, 17].127

It provides a bridge between the efficient task demand dependent encoding of neural in-128

formation through normalisation and observable behavioural parameters, e.g., value of129

outcomes. This has been demonstrated by Louie et al. [23] where context-dependent130

choice behaviour was correlated with the modulation of neural activity through divisive131

normalisation in monkeys’ lateral interparietal cortex. In a different study by Li et al. [24]132

a gain-modulated (normalised) decision variable was shown to be accounted for by changes133

in blood-oxygen-level-dependent signals reflecting neural activity in a dorsal network of the134

human brain.135

In other words, contextualisation of decision-making relates to the divisive normalisa-136

tion of behaviourally relevant (latent) variables such as value, as reflected in the pattern137

of modulation of their neural correlates. This explains the flexibility of the valuation in138

decision-making across a wide range of situations and contexts, providing insights into the139

underlying neuro-computational mechanisms. It also casts light on the interpretation of140

the choice parameter β as the gain parameter during valuation that can dynamically con-141

trol the interaction between different options. The gain can be related to neural activity142

through the canonical divisive transformation (see Louie et al. [15]): µi = K Vi

σH+
∑

j ωjVj
,143

where Vi is the value of the prospect i under consideration (i.e., i ∈ {A,B}), µi is the mean144

firing rate representing the value of prospect i, K is a gain parameter, σH is the semi-145

saturation, and ωi are weight terms (the summation is over all prospects). As shown by146

Louie et al. [15], the most important dependence of µi is on the sum of valuations, i.e., σH147

and ωi have a comparably small effect. The L1 norm Vn = |VA|+ |VB| proposed in eq. (1) is148

thus a simplified form of divisive normalisation. The normalised utility has to be bounded149

just as its neural correlates (e.g., the range of neurophysiologically feasible/available firing150

rates). Thus, the cRUM proposes a neurobiological (rather than an economic) contextual-151

isation of RUM, based on our current understanding of neurocomputational mechanisms152

with canonical computations as divisive normalisation.153

Derivation of the choice parameter β. We validate cRUM and test the endogenous154

property of the choice parameter β by evaluating the model’s generalisation capability155

in different choice scenarios from the literature. Specifically, we aim at capturing two156

scenarios: the first takes into account variability among decision-makers in a population,157
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meaning that we expect the probability of PA to vary between decision-makers; the second158

instead considers an average decision-maker in a population, meaning that we consider159

an aggregated (or population-representative) probability of choice PA. Variability in a160

population can be captured by assuming a stochastic model for β with pdf defined on161

(0,+∞); in this work we assume that β follows a log-normal distribution, denoted here162

by β ∼ LN [µ, σ], where µ and σ > 0 are the mean and standard deviation of the natural163

logarithm of β. We consider the average of the distribution, denoted by E[β], to serve as a164

population-representative value for the choice parameter β, fixed across decision-makers.165

In the process of estimating the β distribution, we impose constraints on its average and166

on its plausible range that accounts for a sufficiently high level of certainty. Specifically,167

following utility normalisation in eq. (1) and the proposed formalisation of intention, we168

suggest that β ought to reflect how choice certainty (the highest probability of choosing one169

prospect and the lowest probability of choosing the other prospect) is perceived by humans170

in terms of probabilities. We note that in eq. (1) ζA − ζB = −1 or ζA − ζB = 1 are limiting171

attitude differences (or preferences) for choosing B over A, or A over B, respectively. This172

means that PA = 1/(1+eβ) or PA = 1/(1+e−β) correspond to sure choices of B or A, defined173

as choices associated with sure probabilities PA = 0 or PA = 1, respectively. Theoretically,174

sure choices PA = 1 or PA = 0 imply β → +∞; however, in prospect experiments,175

PA = 1 or PA = 0 correspond to sure probabilities as perceived by humans. Common176

notions of an unlikely, improbable, or unexpected event would be perceived differently and177

assigned different numerical values by decision-makers in a population; translation of such178

perceptions into numerical values and their variability between individuals have yet to179

be explored at depth [25, 26]. In this manuscript we consider human-social probability180

perception evidence, in particular perceptual numerosity data and data on social perception181

of risk/unlikely events, to infer plausible numerical values for perceived probabilities of182

unlikely events in a population of decision-makers.183

Based on the human-social probability perception evidence available in the literature,184

we impose two constraints on the distribution of β. First, to hypothesise a population-185

representative value E[β] for the choice parameter β, we observe that in perceptual nu-186

merosity experiments a qualitatively recognisable change in proportion is around 1/1 000187

[26, 27, 28, 29, 30], which may be interpreted as the lowest proportion still perceived as188

non-zero by subjects. Thus, we infer 1/1 000 as the most plausible representative value189

of perceived probability of an unlikely event by a population of decision-makers, from190

which we deduce E[β] ≈ 7 as the average value for the choice parameter (eq. (5), Meth-191

ods). If the mean of the β distribution, constrained to 7, represents average perception192
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of unlikely events in a population, a 95% confidence interval can be used to impose a193

lower bound on perceptions of unlikely events among individuals, and thus derive µ and194

σ in the pdf of β. We refer to human perception of societal risks from which we identify195

1/1 000 000 as a generally accepted frequency threshold for (in)tolerable risk, both from196

the individual and societal risk perspectives (Methods). From these considerations, our197

second constraint is that most individuals in a population (say at least 95%) would per-198

ceive a zero probability threshold at roughly 1/1 000 000. From the two constraints, the199

distribution β ∼ LN [1.8, 0.5] can be deduced (eq. (6), Methods; Supplementary Fig. 2),200

modelling variability in a population of decision-makers.201

The distribution β ∼ LN [1.8, 0.5] suggests a simple statistical model of the choice202

probability (eq. (8)). Typified curves for a population cumulative distribution function203

(cdf) of the choice probability PA are plotted in Fig. 2. For ζA− ζB → 0, a step function at204

PA = 1/2 is obtained; while as ζA − ζB → 1 (resp. ζA − ζB → −1) the deterministic limit205

(or step function) indicating the sure choice of A (resp. B) is recovered.206

Application: Experimental results on discrete choices datasets207

First test of cRUM: Variability among decision-makers and the framing effect.208

We identify suitable studies for testing cRUM and variability within a population from the209

literature on the framing effect. We consider the pioneering neuroeconomics study by De210

Martino et al. [18] and the recent experiments conducted by Diederich et al. [31] (denoted211

as DS-FR1 and DS-FR2 in Table 1, respectively) to observe the variability of framing effect212

among decision-makers.213

According to PT1, the framing effect is defined as contradictory attitudes toward risks214

involving gains and losses [32] or as the tendency to prefer a sure over a risky option when a215

problem is framed in terms of potential gains instead of potential losses. Variability among216

decision-makers is captured by diverse exhibited behaviours, risk-avoidant vs risk-seeking217

choices, based on framing of the problem. Given that framing is a systematic behaviour218

captured by PT, the aim of the experiments reported in [18] was to reveal its neurobiological219

basis. In the experiments, 20 subjects chose between a risky (A) and sure (B) prospect:220

prospect pairs were designed with a shifted reference point in order to capture framing,221

and by construction the amounts received in the sure option were identical to the expected222

value of the risky option. The difference in probability of choosing the risky option in gain223

and loss frames (linearly related to a “rationality index”) was determined for each subject224

and correlated with brain’s neural activity. The neuroimaging results revealed a special225

1In this manuscript we use the notation PT to refer also to Cumulative Prospect Theory [9].
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modulatory role of amygdala, primarily associated with the emotional processes. The226

complex entanglement between endogenous effects is noted by De Martino et al. [18, p. 686–227

687] [..] frame-related valence information is incorporated into the relative assessment228

of options to exert control over the apparent risk sensitivity of individual decisions. In229

other words, biases in valuation related to risk and loss/gain, are combined internally230

with perception of “control”. Thus the observed difference in “rationality” between the 20231

subjects could be due to bias as well as variability in the perceived control. In the proposed232

cRUM, this implies that the observed framing effect variations among the 20 subjects could233

in principle be explained by variability between decision-makers in the choice parameter234

β, given utilities VA and VB for risky and sure prospects, respectively.235

To predict variations among subjects observed in framing experiments [18, 31], we236

propose a simulation scenario using the log-normal distribution β ∼ LN [1.8, 0.5] derived237

above as a stochastic model of the variability of the choice parameter β (eq. (6), Methods).238

In particular, we drew 1000 samples of 20 simulated decision-makers from the underlying239

log-normal distribution of β and computed the probability PA for gain/loss prospect pairs;240

the difference in PA in the gain and loss frames quantifies the modelled framing effect241

(details in Supplementary Information). With the mean of ζA − ζB being equal to −0.07242

in the gain frame and to 0.07 in the loss frame (blue dashed curves in Fig. 2, left panel),243

the predicted median framing effect (i.e., difference in PA at the median or 50th percentile244

between loss and gain frames) is around 22.2% (Fig. 2, right panel), with the corresponding245

observed median framing effect in [18] being 17.1%. This means that in a population sample246

a value around 20% is predicted to be the most likely outcome for the median framing effect,247

consistent with observations.248

cRUM with the proposed β distribution reproduces remarkably well the variability in249

framing effect observed in [18] (Fig. 3(a), blue curve, Pearson correlation coefficient r =250

0.985 when comparing the mean model output against data). Nevertheless, the difference251

between modelled and observed framing effect depends also on given utilities and thus on252

PT parameters (γ, δ, λ) in the computation of subjective valuations (eq. (4), Methods),253

especially on the exponent of the utility function δ and the exponent in the weighting254

function γ (Fig. 3(a), right panel). In short, an increase in δ implies less bias (explained as255

higher “rationality” in [18]) and hence the PA difference between frames is smaller (Fig. 3(a),256

right panel, green curve). The risk perception parameter γ has a similar but weaker257

effect (Fig. 3(a), right panel, red curve). Finally, the effect of the loss aversion parameter258

λ is negligible (Fig. 3(a), right panel, yellow curve). Our focus is on the endogenous259

property of β as applied to the framing experiments in [18] where no direct calibration260
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of PT parameters was provided. For simplicity we shall therefore use the “standard” PT261

parameters (γ, δ, λ) = (0.65, 0.88, 2.25) proposed in the original work on PT [9].262

The proposed model for β captures also the effect of proportion of total amount offered263

in the sure prospect B, by definition equal to the probability of winning the gamble264

(Fig. 3(b), left panel): the observed values in both gain and loss frames are reasonably265

well reproduced by cRUM with β ∼ LN [1.8, 0.5] (distributed chart). The framing effect266

is stronger for higher probabilities of winning the gamble (60% and 80% in [18]), corres-267

ponding to larger amounts offered in the sure prospect, compared to smaller probabilities268

of winning the gamble (20% and 40% in [18]), corresponding to smaller amounts offered in269

the sure prospect. Comparatively, the effect of the initial amount of money offered to the270

20 subjects observed in [18] is smaller (Fig. 3(b), right panel), while in cRUM the probab-271

ility of risky choice PA does not depend on the initial amount of money offered due to the272

normalisation (as proven in Remark 1 in the Supplementary Information; Supplementary273

Fig. 3).274

The weak dependency of the probability of choosing the risky prospect A on the ini-275

tial amount offered to participants has also been observed in the experimental studies on276

framing effect conducted by Diederich et al. [31]. These experiments consider a higher277

number of subjects as well as additional factors in the analysis, such as time constraints278

and induced need. cRUM with the proposed stochastic model for β captures reasonably279

well the observed variability in framing effect among decision-makers in the experimental280

settings proposed in [31], with correlation values higher than 0.95, even when comparing281

the obtained results with stochastic models for β estimated using standard calibration282

techniques from machine learning (Supplementary Fig. 4).283

Second test of cRUM: Average representation of a population of decision-284

makers. In the next step of testing cRUM and the endogenous property of β, we consider285

12 experiments reported in the literature (datasets DS1–DS12 in Table 1). Note that in286

general the analysis reported in the experimental studies did not include calibration and287

testing of RUM. A total of around 2 000 data points were considered, where each data point288

was obtained by aggregating choices from a number of decision-makers. Since DS1–DS3289

have relatively few data points and constitute the classical references for PT, we group290

these into an aggregated data group, called DGs (with a total of 15 data points). For291

reference, data groups DGgl, consisting of DS1–DS10 and DS12 (1 095 data points, pre-292

dominantly gain and loss prospects), and DGm, consisting of DS11 and DS12m (654 data293

points, purely mixed prospects), were also considered (Table 2(a)). For completeness we294

consider three scenarios of PT parameters (γ, δ, λ) used in the computation of valuations295
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VA and VB (Table 2(b)): PT parameters all equal to 1 corresponding to expected utility296

(EU), standard PT parameters, and calibrated PT parameters (values reported in Table 1).297

To model aggregated choices we apply cRUM with a population-representative fixed298

value of β corresponding to the estimated mean of the distribution, E[β]. Although we299

argue for E[β] = 7, as derived here from experimental data on perceptual numerosity and300

social perception of extremely unlikely events (eq. (5)), for completeness we also test other301

mean values as population-representative, i.e., E[β] ∈ {1, 2, . . . , 20}, while still preserving302

the constraint in the confidence interval. Statistical measures r (Pearson’s correlation),303

MSE (mean squared error), and p-value of the t-test between data and cRUM model predic-304

tions are illustrated in Fig. 4(a) for PT parameters as in Table 1 (Supplementary Fig. 5(a)305

and Supplementary Fig. 6(a) for EU and standard PT parameters, respectively). To indic-306

ate high correlation and low MSE we consider correlation values r greater than 0.6 and MSE307

values lower than 0.05, respectively. The percentage of datapoints, aggregated across all308

datasets of Table 1, for which the correlation (resp. MSE) is greater (resp. lower) than given309

threshold values is illustrated in Fig. 5(a) for all PT parameters scenarios of Table 2(b). Al-310

though there is a notable difference in statistical measures between datasets and datagroups311

with predominantly gain/loss prospects (DS4–DS7, DS12, DGs), mixed prospects (DS11,312

DS12m, DGm), and gain/loss/mixed prospects (DS8–DS10, DGgl), a plausible range for313

the population-representative value of β is between 4 and 10 (Fig. 4(a)). This range cor-314

responds to roughly 68% confidence interval of the distribution β ∼ LN [1.8, 0.5]. For315

E[β] ∈ [4, 10] the statistical indicators are r > 0.6 and MSE < 0.05, except for the two316

mixed prospect datasets DS11 and DS12m (Fig. 4(a)). In particular, cRUM with E[β] = 7,317

i.e., the mean of the hypothesised distribution inferred from the probability perception data318

[27] (eq. (5)), provides a reasonable population-representative value for predictions of gain319

and loss prospect choices (linear regression plots in Fig. 5(b), bottom row, and Fig. 6, to320

compare with the plots of Supplementary Fig. 7, bottom row, and Supplementary Fig. 8,321

respectively, obtained with E[β] ∈ {4, 10}).322

Using standard PT parameters (γ, δ, λ) = (0.65, 0.88, 2.25) in the calculation of utilities323

VA, VB instead of the specifically calibrated PT parameters for each dataset (i.e., the values324

of PT parameters reported in Table 1) causes a decrease in the value of correlation r325

for the datagroup DGgl (linear regression plots in Fig. 5(b), middle row; Supplementary326

Fig. 9). Moreover, neglecting the effect of bias by setting EU parameters (γ, δ, λ) = (1, 1, 1)327

(Table 2(b)), thereby assuming that decision-makers choose the outcome associated with328

maximum expected utility, reduces significantly correlation values r and increases MSE for329

most of the datasets/datagroups (Fig. 5(b), top row; Supplementary Fig. 10).330
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Ambiguity of prospects affects choices. Formulation of a decision problem (in this331

case prospects) is known to affect choices, e.g., complex vs simple or well-defined vs ill-332

defined problems [8]. Recent evidence shows that subjects prefer simpler prospect formu-333

lations [33]. In our present analysis, a clear distinction is made between mixed prospects334

and gain/loss prospects. Appraisal of alternative outcomes, resulting attitudes and inten-335

tion to choose A or B (Fig. 1) depend on how well subjects comprehend prospect options.336

The notion of control of choice certainty perceived by a decision-maker, quantified by β,337

can be understood for a rational decision-maker as, among others, reflecting problem com-338

prehension. A problem perceived with higher ambiguity should imply lower β, hence we339

anticipate lower β for mixed prospects compared to generally more comprehensible gain or340

loss prospects.341

We propose three ambiguity indicators, given utilities VA, VB and observed choice prob-342

ability PA: the median of the cdf of β, computed using eq. (9), the percentage of data343

points for which β = 0 (corresponding to VA = VB, or, equivalently, PA = 1/2), and the344

percentage of data points for which β < 0. We calculate and illustrate the ambiguity indic-345

ators for each dataset/group and for each PT parameters scenario in Table 2(b) (Fig. 4(b),346

Supplementary Fig. 5(b), Supplementary Fig. 6(b)). A negative β implies that PA > 1/2347

for VA < VB, while a symmetric distribution of β around β = 0 is a statistical expression348

of the flip-of-coin case PA = PB = 1/2 as β → 0. DS5 and DS9 have an unusually high349

number of cases for which β = 0, 12 out of 72 and 21 out of 108 data points, respectively;350

excluding DS5 and DS9, the overall fraction of data with β = 0 is 1.2%, whereas with DS5351

and DS9 it is 4.6%, which is still comparatively small (Fig. 4(b), top right panel). The352

β medians for most data sets/groups are clustered in the 68% confidence interval of the353

proposed distribution for β (shadowed area in Fig. 4(b), left panel) for gain/loss prospects;354

clear exceptions are mixed prospects of DS11 and DS12m, where medians are closer to355

zero and a significant fraction of β values computed from eq. (9) are negative (Supple-356

mentary Fig. 4(b), bottom right panel). If biases are neglected, the fraction of negative357

β increases for a number of datasets/groups (Supplementary Fig. 5(b)), suggesting that358

biases as captured by PT are an integral part of comprehension and valuation.359

Discussion360

The novel cRUM with contextualised exogenous utilities and exogenous choice parameter361

β improves predictability of prospect choices across experimental settings significantly.362

Moreover, the separation between exogenous and endogenous variables facilitates inter-363

pretability of the novel choice parameter β as control parameter, capturing choice certainty364

11



or problem comprehension by decision-makers.365

Our findings however also reveal limitations and potential sources of uncertainty. Choice366

predictability in behavioural economics [8] can be related to broader predictability chal-367

lenges in psychology [34, 35] where probability of deciding on action A from several al-368

ternatives (A, B, C,...) can be written as P (A|X∗, X) with X∗ and X being vectors of369

endogenous and exogenous variables for alternative options [8], respectively. The main dif-370

ficulty when predicting decisions among alternative options in any context is to define and371

characterise X∗, or infer f(X∗|X), the conditional pdf of endogenous variables or paramet-372

ers [8]. Although the normalisation of utilities in cRUM removes explicit dependence of373

the rationality or free parameter on exogenous variables (prospect outcomes) in RUM, our374

results suggest implicit dependence of β on exogenous variables in terms of problem formu-375

lation or types of prospects: more ambiguous mixed prospects imply lower β compared to376

gain/loss prospects. In other words, dependence of f(X∗|X) on X may be more complex377

than previously thought. Further studies are needed to identify endogenous mechanisms378

that control β and their dependence on problem formulation, possibly leading to new or379

modified existing psychological tests for estimating β in a population. Recent works by380

Erev et al. [36] and Peterson et al. [13], where different variants of choice problem formu-381

lation were considered, provide valuable experimental methodologies as well as a wealth of382

data for deeper characterisation of f(X∗|X) in general and f(β), indicating the pdf of β, in383

particular. Incorporating β in neuro-cognitive studies may also help to better understand384

the entanglement between valuation and perceived control or problem comprehension in385

prospect choices noted by [18].386

Although traditionally economic choice models are static, as in eq. (1), experiments387

provide evidence of changes in choices in repeated trials [36, 13], and theoretical dynamic388

decision-making models that explain the effect of repeated prospect choices are available389

in the literature [20, 37, 38]. cRUM has potential to be extended to account for sequential390

effects in choice behaviour. It can also be incorporated into an interconnected network of391

decision-makers to study collective action and social influence, the latter being an import-392

ant part of TPB (Fig. 1) neglected in this study.393

Methods394

Contextualisation of the RUM choice function395

With utilities (or, valuations) VA and VB for prospects A and B, respectively, one way396

of incorporating contextualisation in valuation of prospects into a Fechner type choice397
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function [10] is proposed in this work as398

PA = F
(
β(ζA − ζB)

)
= F

(
β
VA − VB

Vn

)
(1)399

and similarly for PB, where β(ζA− ζB) is referred to as intention of choosing A over B, the400

contextualised utility ζA = VA/Vn is referred to as attitude toward option A, Vn = |VA|+|VB|401

is the L1 norm for the vector [VA, VB] ∈ R2, β is a positive scalar parameter, and F (·) is an402

S-shaped continuous function. The novelty of the choice probability estimate formulated403

in cRUM (eq. (1)) lies in the L1 normalisation, as a method to draw comparisons between404

the intentions towards the two alternative prospects, A and B. In this new context, we405

refer to β as the choice parameter; β can be interpreted as quantifying control, i.e., how406

sure an individual is when making a choice: β → 0 implies PA = 1
2
, and β → +∞ implies407

PA = 1 for ζA − ζB > 0 and PA = 0 for ζA − ζB < 0.408

The most common form of F (·) in the RUM is Logit [6, 10, 7, 13], i.e., F (y) = (1 +409

e−y)−1, which yields410

PA =

(
1 + exp

(
− β

VA − VB

Vn

))−1

=
(
1 + exp

(
− β(ζA − ζB)

))−1
= 1− PB, (2)411

where VA and VB primarily depend on exogenous variables (nominal values, probabilities412

of outcomes).413

Valuation of options. Prospects A and B are defined in terms of outcomes and respect-414

ive probabilities, and can be written as:415

A : {(Y1,A , πA), (Y2,A , 1− πA)} B : {(Y1,B , πB), (Y2,B , 1− πB)} (3)416

where Y1,A and Y2,A are outcomes for prospect A, with probabilities πA and 1−πA, respect-417

ively, and similarly for prospect B. For each prospect, we have Y1 > Y2 ≥ Y0 for gain (or418

positive) prospects, Y1 < Y2 ≤ Y0 for loss (or negative) prospects, while Y1 < Y0 < Y2 for419

mixed prospects; Y0 is a reference value typically set to 0. A subject will choose a prospect420

based on the perceived values of alternatives A and B, denoted respectively by VA and VB421

in this work: eq. (2) implies that option A is preferred to B if VA ≥ VB. According to PT422

[9], VA and VB are computed as423

V (Y1, Y2) =

{
U(Y1)w(π) + U(Y2) (1− w(π)), for positive or negative prospects
U(Y1)w(π) + U(Y2)w(1− π), for mixed prospects

(4a)424

U(Y ) =

{
(Y − Y0)

δ+ , if Y ≥ Y0

−λ(Y0 − Y )δ
−
, if Y < Y0

where Y = Y1, Y2 (4b)425

w(π) =
πγ

(
πγ + (1− π)γ

)1/γ , (4c)426

427
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where V , Y1, Y2, and π pertain to A or B. In eq. (4), U(Y ) is the utility function and w(π)428

is the decision weighting function. The PT parameters (γ, δ, λ) in eqs. (4b)–(4c) can be429

inferred from experiments (see Data description and Table 1 for details on the datasets430

considered in this study).431

The choice parameter β432

The intention of choosing option A over B is bounded in the interval [−β, β]: in view of433

eq. (1), this means obtaining PA = 1 for β(ζA−ζB) = β, and PA = 0 for β(ζA−ζB) = −β. In434

other words, for rational subjects, ζA−ζB = −1 should imply zero probability of choosing A.435

The concept of zero probability needs to be somehow related to human-social perceptions436

of certainty, i.e., it must depend on what humans perceive as near-zero probability or,437

equivalently, probability of an unlikely event. Assuming that the perception of near-zero438

probabilities by humans varies across a population of decision-makers, we ask the following439

questions: (i) How does the perception of unlikely events vary between decision-makers?440

(ii) What is a representative value of lowest perceived probability of an unlikely event in a441

population of decision-makers? Since the near-zero probability is captured in cRUM by the442

lower limit β(ζA−ζB) = −β, to answer these questions means to hypothesise a distribution443

for β to model variability in perceived probability of an unlikely event between decision-444

makers, whose mean represents an average perceived probability of unlikely events by a445

population of decision-makers.446

In the following, we deduce a distribution for β from what is generally accepted in the447

society as a representative probability of an unlikely event where we seek a threshold, or448

cutoff as a prevailing, generally acceptable probability perception for an unlikely event (or449

near zero-probability event). We consider a log-normal distribution a stochastic model β450

in a population with pdf defined on (0,+∞), denoted here by LN [µ, σ] where µ and σ are451

the mean and standard deviation of log(β). To obtain estimates of µ and σ, we shall first452

establish a population-representative value, mean of the distribution denoted by E[β], and453

a lower limit of perceived probability for unlikely events, within say a 95-percentile, which454

in view of eq. (2) sets an upper bound on β.455

Derivation of a population-representative value456

Consider risk criteria that are used for management of hazardous activities or actions457

in societies [39, 40, 41, 42]. The main distinction for establishing such criteria is made458

between individual and societal risk of casualties or fatalities per year. Whereas societal risk459

considers rare events with potentially large number of fatalities (e.g., accidents), individual460
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risk is focused on a single individual exposed constantly to a hazard. In the literature,461

activities with a fatality risk less than 1/1 000 are acceptable or tolerable, whereas over462

1/1 000 are unacceptable or intolerable. When computing the societal risks using the so-463

called Farmer’s diagram, the anchor frequency for 1 fatality is most often set to 1/1 000464

[39]. However, tolerable individual risk per year is typically defined as 1/1 000 000 [39, 40].465

An important societal perception of frequencies or probabilities is related to genetic466

disorders referred to as rare diseases. To stimulate drug development with tax incentives467

and government funding, US Congress passed the Orphan Drug Act in 1983 for rare disease468

defined as a condition affecting less than 200 000 US citizens [43] for a total US population469

at the time of around 230M; hence approximately 1/1 000 is considered by US society as470

a threshold for rare vs non-rare diseases. Japan [44] and the EU [45] have taken similar471

initiatives for stimulating drug development, where the threshold frequency for rare disease472

was defined somewhat lower than the US, as 1/2500 and 1/2000, respectively.473

Finally, visual perceptions of probability as frequencies have been studied experiment-474

ally [30, 27], where the resolution considered is around 1/1 000, i.e., 1/1 000 is the lowest475

perceived probability. Subjects are tasked to estimate the proportion of coloured discs476

in boxes with a total of 1 000 discs; this implies a probability resolution of 1/1 000. An477

identical experimental setup to [27] with the same probability resolution of 1/1 000 was478

considered recently in [28], where the authors tested trial-by-trial updating models of prob-479

ability perception. Furthermore, the probability resolution of around 1/1 000 was also con-480

sidered as a lower bound in studying risk and probability perception in children [46]. Zhang481

and Maloney [29] studied probability and frequency distortion in perception and action,482

presenting a wide range of data both from the literature and own experiments, which are483

also based on subjects’ estimates of probabilities from a box with 600 discs of two colours.484

From the above considerations, we conclude that approximately 1/1 000 is a reasonable485

representative frequency threshold distinguishing human-social perceptions of unlikely vs486

likely events, hypothesising 1/1 000 as a representative or average cut-off for zero probab-487

ility. Thus, in view of eq. (2), a population-representative value is computed as follows,488

where log indicates the natural logarithm:489

E[β] = log

(
1− 1/1 000

1/1 000

)
= log(999) ≈ 7. (5)490

Derivation of a stochastic model491

In the previous section we consider E[β] = 7 as a representative value for a population.492

In this section we include variability across individuals, by proposing a stochastic model493

for β. In the proposed log-normal β distribution we constrain the mean to be equal to 7494
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and we impose a constraint on the 95% confidence interval. If the mean represents average495

perception of unlikely events in a population, a 95% confidence interval is used to impose496

a lower bound on perceptions of unlikely events across individuals.497

Considering the Farmer’s diagrams for societal risk, we find that a number of countries498

define a cutoff frequency as 1/1 000 000, a good example being Hong Kong [47], the UK499

[48], and China [49], such that risks less than 1/1 000 000 are considered tolerable. Thus500

1/1 000 000 seems to be a generally accepted frequency threshold for (in)tolerable risk,501

both from the individual and societal risk perspectives. Note that 1/1 000 000 coincides502

with current best estimate of natural hazard mortality rates; any hazard with frequency503

below 1/1 000 000 does not require any action. Based on above considerations, it appears504

reasonable that most individuals in a population (say at least 95%) would perceive a zero505

probability threshold at roughly 1/1 000 000 whereby, together with imposed mean equal506

to 7, µ = 1.8 and σ = 0.5, can be deduced (details in Supplementary Information).507

We then postulate the stochastic model for the choice parameter β as:508

β ∼ LN [1.8, 0.5]. (6)509

Separation of exogenous and endogenous variables. Eq. (1) is aligned with the510

extended random utility framework of [8]. The probability of choosing, say, option A511

is conditioned on exogenous (X) and endogenous (X∗) variables as PA ≡ P (A|X,X∗);512

endogenous variables are also referred to as internal or latent (unobservable). Given a513

separable parametrisation for the endogenous variables X∗, the observable unconditional514

probability of choosing A [8] is extended to our case as515

P (A|X) =

∫

X∗
P (A|X,X∗)f(X∗|X)dX∗ =

∫ ∞

0

P (A|X, β)f(β|X)dβ (7)516

where the last term can be approximated by the population-representative value (eq. (5)),517

and f(X∗|X) is a pdf for the endogenous variables.518

The framing effect and variability in a population of decision-makers. To eval-519

uate variability between decision-makers in a population and test the proposed stochastic520

model for β we consider two experimental studies on the framing effect, the pioneer work521

of De Martino et al. [18] (DS-FR1 in Table 1), detailed here, and the extensive study522

of Diederich et al. [31] (DS-FR2 in Table 1), detailed in the Supplementary Information523

which contains also a comparison between the proposed stochastic model (eq. (6)) and524

calibrated models for β.525

The work of De Martino et al. presents experimental data that combine framing and526

variability effects, obtained by studying variation between 20 subjects. In the experiments527
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the subjects were tasked with choosing between risky (A) and sure (B) prospects, presen-528

ted in the context of gain or loss frames. Prospect pairs were designed with a shifted529

reference point in order to capture framing. Specifically, the prospects were defined from530

the following (16 possible) combinations of outcomes Y and probabilities π:531

Yi = (£25,£50,£75,£100), πj = (1/5, 2/5, 3/5, 4/5), i, j = 1, 2, 3, 4532 {
AG : {(Yi, πj), (0, 1− πj)}, BG : {(Yiπj, 1), (0, 0)} (gain frame)
AL : {(−Yi, 1− πj), (0, πj)}, BL : {(−Yi(1− πj), 1), (0, 0)} (loss frame)

533

534

with L and G denoting loss and gain frames, respectively. The framing effect, i.e., the535

difference between loss and gain frames in probability of risky choices, was found in the536

study to be in a range between 6% and 40% for each one of the 20 subjects (Fig. 3(a)): that537

is, each subject chose more often the risky option (A) when prospects were framed as losses538

than when prospects were framed as gains, although the actual monetary outcome was539

identical. The subject with the lowest value (≈ 6%) was interpreted as the most rational540

individual and the subject with highest value (≈ 40%) as the least rational individual.541

pdf of choice probability PA. Using the proposed stochastic model for β and given542

ζA − ζB, the pdf of choice probability PA, f(PA|ζA − ζB), can be obtained from eq. (2).543

Given PA = F (β(ζA − ζB)) and fβ(β) as the pdf of β, f(PA|ζA − ζB) can be calculated as544 ∣∣∣ ∂
∂PA

F−1(PA, ζA − ζB)
∣∣∣ fβ(F−1(PA, ζA − ζB)), yielding:545

f(PA|ζA − ζB) =
1

(1− PA)PA|ζA − ζB|
fβ

(
log

(
PA

1− PA

)
1

ζA − ζB

)
. (8)546

Complex choice scenarios and ambiguity indicators. The cRUM with the stochastic547

model for β we propose, while performing reasonably well given its simplicity, is unable548

to explain more complex choice scenarios, including, e.g., choice prospects with multiple549

outcomes, mixed prospects, and in general characterised by poor problem comprehension550

by decision-makers. In what follows we infer a pdf for β from observed PA and ζA− ζB and551

we propose ambiguity indicators identifying complex choice scenarios.552

An expression for inferring β from observed PA and ζA − ζB is obtained from eq. (2):553

β =
1

ζA − ζB
log

(
PA

1− PA

)
. (9)554

In particular, β > 0 if (PA − 1
2
)(ζA − ζB) > 0. However, using observed PA and ζA − ζB555

data from the datasets of Table 1 and the datagroups of Table 2(a) to infer β using eq. (9),556

we obtain zero or even negative values for β (Fig. 4(b)). In view of the deterministic limit557

PA = 1
2

for β = 0, we consider β = 0 and β < 0 as suitable ambiguity indicators of a choice558
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problem; a greater fraction (in absolute value) of β < 0 in an experimental sample would559

indicate greater overall difficulty for subjects to value outcomes. In addition to the fraction560

of zero and negative β values, another proposed ambiguity indicator is the β medians in561

the cdf curves for inferred β (eq. (9)).562

Data description563

Table 1 summarises the 12 datasets (denoted by DS1–DS12) and 2 framing-effect datasets564

(denoted by DS-FR1–DS-FR2), collected from the literature, which provide the evidence565

base for our study. The number of data points for each dataset varies between 2 and 559,566

with a total number of data points close to 2 000. Each data point defines two prospects, A567

and B, in terms of outcomes and respective probabilities (eq. (3)), and associated observed568

choice probability PA for A and PB = 1 − PA for B; note that the choice probability for569

a given prospect was obtained aggregating choices made by many subjects. Of particular570

interest are the more recent works of Erev et al. [50, 21, 36] (DS6, DS8, DS9 in Table 1) with571

extensive data where a number of variants in the prospect formulation were considered. For572

our purpose however, only the simplest prospect cases are extracted such that compatibility573

is ensured with earlier studies (DS1–DS8, Table 1). The experiments of Lopes and Oden574

[51] (DS5) have multiple outcomes which are either gains or losses. DS11 has multiple575

outcomes and mixed prospects as the most complex formulation of options. Prospects576

used in the experiments of Erev et al. [36] (DS9) and Peterson et al. [13] (DS12) were577

generated using the algorithm proposed in [36], but for this study we extract only the578

baseline cases. The specific steps of data extraction are detailed in the Supplementary579

Information.580

As a reference and to test cRUM across datasets, we consider three aggregated data581

groups (Table 2(a)). The data group DGs aggregates the first three datasets of Table 1 and582

has a total of 15 data points; it represents classical datasets of prospect theory, where the583

standard PT parameters are introduced (see also the next section and Table 2(b)). The584

data group referred to as DGgl contains roughly 1 100 data points, with predominantly gain585

(g) and loss (l) prospects; it aggregates the datasets DS1–DS10 and DS12, i.e., all data586

except DS11 and DS12m, which consist of pure mixed prospects. Note that DS8, DS9, and587

DS10 contain gain, loss, and mixed prospects in roughly equal proportions. Finally, the588

data group DGm gathers the datasets DS11 and DS12m (with a total of 654 datapoints),589

i.e., it consist of mixed prospects.590
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PT parameters used in this study. Selection of (γ, δ, λ) in eq. (4) quantifies different591

risk and valuation biases. In this work we analyse effect of variations of PT parameters by592

considering three scenarios of increasing complexity, as illustrated in Table 2(b).593

The first scenario corresponds to expected utility (EU): (γ, δ, λ) = (1, 1, 1), which implies594

a simple expected value without any biases (or, with negligible biases).595

The second scenario identifies standard PT parameters : following the experimental596

data analysis of Tversky and Kahneman in [9], standard PT parameter values are δ =597

δ+ = δ− = 0.88 (for both gains and losses) and λ = 2.25 in eq. (4b). The exponent in598

the weighting function in eq. (4c) was reported as 0.61 for positive and 0.69 for negative599

prospects. Subsequent studies (e.g., [51, 10]) obtained higher values of weighting function600

exponent. As a compromise and for simplicity, since this work does not aim at investigating601

calibration of PT parameters (utilities are considered exogenous variables) and we wish to602

limit the overall number of PT parameters setting the main focus on the choice parameter603

β, we use γ = 0.65 (average value) as the standard PT value for all prospects.604

Finally, the third scenario reports calibrated values of PT parameters : along with the605

respective references, the PT parameters (γ, δ, λ) used in this work for predictive modelling606

are the ones reported in Table 1. If unavailable in the reference, standard PT parameter607

values, i.e., (γ, δ, λ) = (0.65, 0.88, 2.25), were used.608
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Valuation of prospects
A and B, VA and VB:

Exogenous variables (X),
directly observable

social factors

attitude toward A and B,
ζA = VA/Vn and ζB = VB/Vn,

Vn = |VA|+ |VB|

choice parameter β:
Endogenous variable (X∗),
not directly observable

Intention of
choosing A over B

= β(ζA − ζB)

Probability of
choosing A

PA = P (A|X,X∗)

= F
(
β (ζA − ζB)

)

(observable)

Figure 1: Illustration of cRUM, the proposed theoretical framework for predictive modelling of
choice between prospects A and B, conceptualised using notions from TPB. Contextualisation of
the valuation is ensured by the normalisation using L1 norm Vn = |VA| + |VB|. The separation
between exogenous and endogenous variables follows the concept presented by Ben-Akiva et al.
[8]. The key novelty in the framework is the choice function for computing the choice probability
PA. Exogenous variables (X) represent observable input information as outcomes, and probabil-
ities for prospects A and B. Endogenous variables (X∗) account for bounded rationality due to
limitation/effect of comprehension, limited cognitive flexibility, emotion, motivation, moral value,
etc; they are not observable.

Figure 2: (left panel): cdf of PA type-curves for fixed attitude toward choosing prospect A,
deduced from eq. (8), given ζA−ζB ∈ [−1, 1]. Blue dashed curves are mean of experimental values
ζA − ζB from De Martino et al. [18] in both gain and loss frames; the dashed black thin line is
the median (50th percentile). (right panel): The framing effect estimated with cRUM using the
prospect pairs from De Martino et al. (DS-FR1 in Table 1), i.e., the difference between the blue
dashed curves in the left panel. A blue circle and blue shadowed area indicate the median framing
effect and its 95% confidence interval, respectively, obtained using cRUM with β ∼ LN [1.8, 0.5].
A black square and black shadowed area indicate the median framing effect observed in [18] and its
95% confidence interval, respectively. Given the overlapping confidence intervals for the medians,
we conclude that there is no statistical difference.
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(a)

(b)

Figure 3: Framing and variability analysis using cRUM (eq. (2)) with the proposed stochastic
model for β (eq. (6)); the data are from De Martino et al. [18] (DS-FR1 in Table 1). (a): 20
decision-makers in ascending order according to the framing effect, i.e., the percentage increase
in their gambling choice in the loss frame relative the gain frame. The left panel illustrates
distribution charts obtained by considering the proposed stochastic model β ∼ LN [1.8, 0.5] in
eq. (2) for a total of 1000 samples of 20 simulated subjects. Calculations consider standard PT
parameters, i.e., (γ, δ, λ) = (0.65, 0.88, 2.25). The right panel illustrates model sensitivity to PT
parameters (γ, δ, λ), where the data is compared to modelled mean value; the symbol r indicates
the associated values of Pearson’s correlation between observed (black symbol) and modelled
(coloured symbols) mean value of percentage increase in gambling choice. (b): Gambling choice
probability PA in loss and gain frames for different fractions of total amount offered in the sure
option (left panel), and for different initial total amounts (right panel). Black symbols are data
from De Martino et al. [18], distribution charts are obtained from cRUM with β ∼ LN [1.8, 0.5]
with coloured symbols used to indicate the modelled mean value. Red colour indicates gain frame,
while blue colour indicates loss frame. PT parameters are again (γ, δ, λ) = (0.65, 0.88, 2.25).
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(a)

(b)

Figure 4: (a): Model fit/Comparison in terms of statistical measures (correlation r, mean squared
error MSE, and p-value of t-test; Supplementary Information) between observed choice probability
PA and predicted choice probability PA using cRUM with E[β] ∈ {1, 2, . . . , 20} and all datasets
and datagroups listed in Tables 1 and 2(a). PT parameters are as in Table 1. Blue colour signals
what we consider desirable, i.e., high correlation, low MSE, and high p-value. Overall (except
DS11 and DS12m) the statistical indicators are r > 0.6, MSE< 0.05, and p-value ̸< 0.05 (blue
colour) when E[β] belongs to the 68% confidence interval of LN [1.8, 0.5], range illustrated by
vertical black lines. (b): cdf of β obtained from eq. (9) (left), percentage of datapoints for which
β = 0 (top right), and percentage of datapoints for which β < 0 (bottom right) for all datasets
(colour-coded) and datagroups (black) of Tables 1 and 2(a). The proposed ambiguity indicators
(Methods) are the percentage of zero and negative β values (right panels), and the β medians
(indicated by dot symbols in the curves, left panel). DS5 and DS9 have the highest number of
cases for which β = 0. DS11 and DS12m have the highest number of cases for which β < 0;
moreover, the inferred β medians are negative (DS11) or close to zero (DS12m).
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(a)

(b)

Figure 5: (a): Percentage of datapoints across datasets for which the correlation r is greater than
a threshold rth (left panel), and for which the MSE is less than a threshold MSEth (right panel),
for all PT parameters scenarios of Table 2(b). The dashed lines indicate the threshold values used
to indicate high correlation and low MSE in Fig. 4(a). (b): Observed choice probability PA vs
estimated choice probability PA using cRUM with E[β] = 7 and corresponding linear regression
line for all PT parameters scenarios of Table 2(b) and all datagroups of Table 2(a) (described in
the title of individual plots).
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Figure 6: Linear regression plots between the observed choice probability PA and the estimated
choice probability PA using cRUM with E[β] = 7 and corresponding correlation values r for each
dataset of Table 1 and each datagroup of Table 2(a). The PT parameters used in the computation
of utilities are from Table 1.
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Data set
(DS#) Experiment Reference No. of

problems
PT parameters

(γ, δ, λ)

DS1 gain/loss Kahneman and
Tversky (1979) [52] 11 (0.65, 0.88, 2.25)⋆,a

DS2 gain/loss Tversky and
Kahneman (1981) [32] 2 (0.65, 0.88, 2.25)⋆,a

DS3b gain/loss De Martino et al.
(2006) [18] 2 (0.65, 0.88, 2.25)c

DS4 gain/loss Brandstätter et al.
(2006) [53] 4 (0.75, 0.33, 2.25)d

DS5 gain/loss
(multiple outcomes)

Lopes and Oden
(1999) [51] 72 (0.75, 0.33, 2.25)d

DS6 gain Erev et al.
(2002) [50] 200 (0.75, 0.33,−)⋆,d

DS7 gain Stott
(2006) [10] 90 (0.96, 0.19,−)⋆

DS8 gain/loss/mixed Erev et al.
(2010) [21] 120 (0.7, 0.89/0.98, 1.5)⋆

DS9 gain/loss/mixed Erev et al.
(2017) [36] 108 (1, 1, 1)e

DS10 gain/loss/mixed Murphy and Brincke
(2018) [54] 91 (0.65, 0.88, 2.25)⋆,f

DS11 gain/loss/mixed
(multiple outcomes)

Brooks et al.
(2018) [55] 95 (0.65, 0.89/0.92, 1.69)

DS12 gain/loss Peterson et al.
(2021) [13] 395 (0.65, 0.88, 2.25)⋆

DS12m mixed Peterson et al.
(2021) [13] 559 (0.65, 0.88, 2.25)⋆

Data set
(DS-FR#) Experiment Reference No. of problems

for each frame
No. of

subjects

DS-FR1b framingc De Martino et al. (2006)
[18]

16 (gain) + 16
(loss) 20

DS-FR2 framingc Experiment 2, Diederich
et al. (2020) [31]

48 (gain) + 48
(loss) 54

Table 1: Data sets collected from literature that constitute the evidence basis for validating eq. (1).
(top): Across subjects studies (bottom): Within-subject studies. Legend. ⋆: PT parameters are
explicitly calibrated in the corresponding reference. a: Following the experimental data analysis of
Tversky and Kahneman in [9], our standard PT parameters are λ = 2.25 and δ = δ+ = δ− = 0.88
for both gains and losses in eq. (4b). The exponent γ in the weighting function (eq. (4c)) was
estimated to 0.61 and 0.69 for gain and loss prospects, respectively; for simplicity, we use γ = 0.65
(i.e., the average) as the standard PT value. b: DS3 = DS-FR1 is used to address variability and
framing. c: Standard PT values are used since no other values are calibrated and given in the
reference. d: In Lopes et al. (DS4) PT parameters from three different datasets (DS2, DS5, DS6
in our notation) are compared; accordingly to their results, we use PT parameters from DS6. e:
In DS9 we test EU (i.e., PT parameters all equal to 1) as the simplest baseline and find that it
works reasonably well, better than PT standard values. f: In Murphy and Brincke (DS10), PT
parameters are calibrated as distributions. We take a simple approach and compare EU and PT
standard values, finding that the latter work better.
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(a) Data groups
(DG#)

Datasets included
(from Table 1)

Prospects’ Types
(predominant)

No. of data
points

DGs DS1-DS3 gain/loss (standard PT param.) 15
DGgl DS1-DS10, DS12 gain/loss 1095
DGm DS11, DS12m mixed 654

(b) Scenario PT parameters (γ, δ, λ) Notation
EU (1, 1, 1) expected utility

Standard PT (0.65, 0.88, 2.25) standard PT (from Tversky and Kahneman [9])
Calibrated from Table 1 calibrated PT

Table 2: (a): (aggregated) Data groups considered in this work. (b): Scenarios considered in this
work to test effect of variability of PT parameters on cRUM.
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