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Multi-agent consensus over time-invariant and time-varying signed
digraphs via eventual positivity

Angela Fontan1, Lingfei Wang2, Yiguang Hong3, Guodong Shi4, and Claudio Altafini5

Abstract—Laplacian dynamics on signed digraphs have a
richer behavior than those on nonnegative digraphs. In particu-
lar, for the so-called “repelling” signed Laplacians, the marginal
stability property (needed to achieve consensus) is not guaranteed
a priori and, even when it holds, it does not automatically lead
to consensus, as these signed Laplacians may lose rank even in
strongly connected digraphs. Furthermore, in the time-varying
case, instability can occur even when switching in a family of
systems each of which corresponds to a marginally stable signed
Laplacian with the correct corank. In this paper we present novel
conditions for achieving consensus on signed digraphs based on
the property of eventual positivity, a Perron-Frobenius type of
property for signed matrices. The conditions we develop cover
both time-invariant and time-varying cases. A particularly simple
sufficient condition, valid in both cases, is that the Laplacians are
normal matrices. Such condition can be relaxed in several ways.
For instance, in the time-invariant case it is enough that the
Laplacian has this Perron-Frobenius property on the right side,
but not on the left side (i.e., on the transpose). For the time-
varying case, convergence to consensus can be guaranteed by
the existence of a common Lyapunov function for all the signed
Laplacians. All conditions can be easily extended to bipartite
consensus.

I. INTRODUCTION

Distributed algorithms for computation and control on net-
works often rely on a Laplacian-like dynamics to achieve their
goal. The underlying assumption that is normally made is that
the adjacency matrix of the graph is nonnegative, meaning that
the agents collaborate to achieve a common goal. In several
applications, however, assuming that the adjacency matrix
has nonnegative weights is a limitation. These include social
networks, where the individuals can be “friends” or “enemies”,
computer networks, where computers can trust or mistrust
each other, and robot networks, where robots can collaborate
or compete to accomplish a task [1], [2], [3], [4], [5], [6],
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[7]. More generally, in all contexts in which antagonism plays
a role, it is more appropriate to assume that the weights of
the graph can have both positive and negative values, i.e., to
consider signed graphs [1], [2]. Other contexts in which signed
graphs appear include, e.g., small-disturbance angle stability
of microgrids [8], [3].

When a graph is signed, there is more than one way to
construct a signed Laplacian matrix. In particular, the two
main alternatives that have been studied in the literature differ
in how the diagonal elements are computed from the signed
adjacency matrix. In the terminology of [2], they are denoted
“opposing” and “repelling” Laplacian. In this paper we focus
on the “repelling” Laplacian, whose main feature is that it
always has 0 as an eigenvalue, but it may fail to be stable [9].
Another complication that arises for “repelling” Laplacians
is that strong connectivity of the graph no longer guarantees
that the Laplacian has corank 1, meaning that even marginally
stable “repelling” Laplacians may fail to lead to consensus
when their kernel has dimension larger than 1. In the time-
invariant case, conditions for stability are provided in [4],
[10], [11], [3] for signed undirected graphs, while for signed
digraphs some partial results appear in [12], [13], [14]. In
the time-varying case, we are not aware of any systematic
study (unlike for the “opposing” signed Laplacian, for which
an abundant literature exists [5], [6], [7], [15]). The only
somewhat related paper we know is [16], which however in-
vestigates a different problem, the so-called signed consensus.
The interesting aspect that appears when trying to solve the
associated time-varying signed “repelling” consensus problem
(approximated as a system switching among a certain number
of Laplacian matrices) is that stability can be lost even if the
time-varying signed Laplacian is marginally stable and with
corank 1 for all times. This is in stark contrast to what happens
in the “nonnegative” and “opposing” Laplacian cases, and
more akin to what happens on “ordinary” (i.e., non Laplacian)
time-varying linear systems. In the nonnegative digraph case,
in fact, a time-varying Laplacian never diverges, even though
it may not converge [17]. Time-varying “opposing” signed
Laplacians, on the other hand, converge to zero as soon as
one of the switching systems is not structurally balanced [5],
[6], [7]. In ordinary linear systems, instead, stability of all
matrices of a switching system does not imply stability of
the switching system [18], [19], and divergence can occur
for certain switching patterns. The analysis that must be
performed on our systems is therefore qualitatively different
from that required for “nonnegative” and “opposing” time-
varying Laplacians (which can never become unstable), as
well as from that required for “ordinary” (i.e., not Laplacian)
switching linear system (where each matrix is asymptotically
stable, while Laplacians are only marginally stable).
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The twofold aim of this paper is
1) to provide a thorough stability analysis of signed Lapla-

cians on digraphs in both time-invariant and time-varying
cases, and

2) to provide a number of conditions for solving the con-
sensus problem on signed digraphs in both cases.

The conditions we develop are of algebraic nature and rely
on Perron-Frobenius (PF) theory. If the canonical way of
formulating the PF theorem (for the positive orthant) is to
consider a matrix which is nonnegative or Metzler, it has been
shown in [20], [21], [22] that the category of matrices enjoying
a PF property (namely, spectral radius which is a simple
strictly dominating real eigenvalue of the matrix, of positive
eigenvector) is strictly larger than nonnegative (or Metzler)
matrices, and includes also matrices having some off-diagonal
entries that are negative. These matrices are called Eventually
Positive (EP) when their powers become positive matrices
after a certain exponent, and Eventually Exponentially Positive
(EEP) when the matrix exponential becomes positive after a
certain time. EP matrices generalize positive matrices, while
EEP matrices generalize Metzler matrices. Eventual positivity
has been used by some of us to study consensus-like problems
in [12], [13], to represent linear systems which are externally
but not internally positive in [23], and to study Laplacian
pseudoinverses in [24].

In this paper we show that indeed EEP matrices can provide
an effective way to obtain consensus conditions for signed
Laplacians. If in the undirected case necessary and sufficient
conditions have been obtained in the literature [13], [10],
[25], [4], in the directed case (which has so far only been
investigated with these tools by us in [12], [13]), only sufficient
conditions can be found. The gap between necessity and
sufficiency admits a neat interpretation: it corresponds to
matrices that obey a “right PF property” but not a “left PF
property”, i.e., such that their transpose fails to satisfy the
PF property. We also show that for weight balanced digraphs
our EEP conditions become necessary and sufficient, and that
for normal Laplacians they become equivalent to positive
semidefinitness of the symmetric part of the Laplacian.

The same notions can be used also in the time-varying case.
What is shown in the paper is that a set of matrices that
are simultaneously EEP and normal forms a consensus set,
i.e., a set such that any switching sequence of matrices from
the set (with arbitrary switching times) leads to consensus.
A straightforward consequence is that any set of EEP signed
Laplacians on undirected graphs is always a consensus set,
and convergence to consensus is always guaranteed. That is
not true for digraphs in which the signed Laplacians are not
normal matrices. In this case, divergence can occur for certain
switching patterns, as can be easily shown in examples.

In the paper it is shown that the normality condition is
sufficient but not necessary. As a matter of fact, in the
time-varying case, normality corresponds to all Laplacians
admitting a Common Lyapunov Function (CLF) of quadratic
type, in which the matrix associated to the quadratic form is
the identity. The class of time-varying Laplacians achieving
consensus can be extended considerably if we relax the
normality assumption and allow for more general CLFs. In

particular, we show how to check the existence of general
quadratic CLFs, and also of CLFs which are homogeneous
polynomials [26], using Linear Matrix Inequalities (LMI). In
order to do so, we need to adapt the methods normally used for
families of Hurwitz systems to families of marginally stable
systems with the right corank. Unlike e.g. [27], [28], however,
the focus is here on consensus, rather than uniform asymptotic
stability. For that it is necessary to project the LMIs onto the
orthogonal complement of the “agreement subspace”, where
uniform asymptotic stability tests can then be applied.

The framework of signed graphs finds applications also in
discrete-time, e.g., in opinion dynamics, and the algebraic
approach we have developed can be applied also to the study
of discrete-time signed consensus problems. In fact, when a
matrix has negative entries but still has row sums equal to 1,
its marginal Schur stability is no longer guaranteed [29]. In
this case, the equivalent concept of Eventually Stochastic (ES)
matrix can be defined and used in an analogue way. In partic-
ular, the LMI-based results we obtain in this case complement
those obtained for discrete-time switching systems containing
mixtures of asymptotically stable and marginally stable modes
[30], [27], [31], which normally deal with positive systems
only and with uniform asymptotic stability (here we are instead
interested in consensus).

Finally, the approach can be generalized also to bipartite
consensus, i.e., a form of consensus in which all agents
converge to the same value in modulus but not in sign [1].
This type of behavior is often associated to polarization in
opinion dynamics, see [1], [5], [6]. Unlike for the “opposing”
signed Laplacian, where the concept is tightly linked to the
notion of structural balance of the signed digraph [1], here
bipartite consensus has to do instead with the signature of the
right PF eigenvector, and can occur also when the signed graph
is structurally unbalanced.

The rest of this paper is organized as follows: in Section
II some preliminary material is presented. The time-invariant
case is studied in Section III, and the time-varying case in
Section IV. Section V deals with CLF in the time-varying case
and Section VI with bipartite consensus. Some open problems
are discussed in Section VII.

Part of the material in this paper was presented in the two
conference papers [13] and [32]. In particular, a large fraction
of the material of Section III appears in [13], and that of
Section IV in [32]. The material in Sections V and VI is novel
and appears here for the first time.

II. PRELIMINARY MATERIAL

Notations. The real number and integer sets are denoted R
and Z, respectively, while R≥ and Z≥ represent respectively
the nonnegative real number and nonnegative integer sets. In
general, numbers are denoted lowercase letters x, y, a, b, . . .
and lowercase Greek letters α, β, . . . The modulus of a number
is denoted | · |. For any x ∈ R, we write sgn(x) to denote the
sign of x and let sgn(0) = 0. Given a positive integer m,
let [m] be the set of all positive integers that are no larger
than m, i.e., [m] = {1, 2, . . . ,m}. All vectors are real column
vectors denoted with bold lowercase letters x,y, z, . . . The i-
th entry of a vector x is denoted [x]i. The Euclidean norm is
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denoted ‖·‖. Matrices are denoted with upper case letters such
as A,B,W, . . . All matrices are real unless stated otherwise.
Given a matrix A ∈ Rn×n, A> denotes its transpose and Ak

denotes the kth power of A. The (i, j)-th entry of a matrix A
is denoted Aij or [A]ij ; the spectrum of A is denoted Λ(A) =
{λ1(A), . . . , λn(A)}, while Re[λi(A)] indicates the real part
of the eigenvalue λi(A); ρ(A) represents the spectral radius
of A, i.e., ρ(A) = maxi∈[n] |λi(A)|, and µ(A) represents
the spectral abscissa of A, i.e., µ(A) = maxi∈[n] Re[λi(A)].
For matrices, the symbol “>” (resp. “≥”) is to be intended
element-wise: A > 0 (resp. A ≥ 0) means Aij > 0 (resp.
Aij ≥ 0) for all i, j = 1, . . . , n. Similarly, for vectors, x > 0
(resp. x ≥ 0) means [x]i > 0 (resp. [x]i ≥ 0) for all
i = 1, . . . , n. The identity matrix is denoted Id, with d > 0 as
the dimension (sometimes omitted). The vectors or matrices
with all entries equal to 0 or 1 are all denoted 0 or 1, with the
dimensions depending on the context. Given A, B ∈ Rn×n,
their Kronecker product is denoted A⊗B and their Kronecker
sum A⊕B.

A. Signed graphs and signed Laplacians

A digraph is represented as G = (V, E , A), where V = [n]
is an index set, an ordered pair (j, i) ∈ E denotes a directed
link from node j to node i over the set V , and the matrix
A ∈ Rn×n is the weighted adjacency matrix corresponding to
G, with Aij 6= 0 if and only if (j, i) ∈ E . Note that Aij can be
positive or negative, which attaches to each edge (j, i) a sign,
i.e., sgn(Aij). The graph G is therefore called a signed graph.
G is undirected if A = A>. G is called weight balanced if
A1 = A>1.

Given the signed digraph G of weighted adjacency matrix
A, and denoted σin

i =
∑n
j=1Aij the weighted in-degree of

node i, let us define the Laplacian as

L = Σ−A where Σ = diag(σin
1 , . . . , σ

in
n ). (1)

Since A can have negative entries, σin
i can even become

negative. Notice that the Laplacian (1) is invariant to the
presence of digonal elements in A (i.e., of self-loops in G).
In our recent paper [2], the Laplacian (1) is referred to as
“repelling signed Laplacian”, terminology which allows us to
distinguish it from a second signed Laplacian (referred to in
[2] as “opposing signed Laplacian”), obtained replacing σin

i

with σin,abs
i =

∑n
j=1 |Aij |, see [1], [33], [34].

For the graph G, node i is said to be linked to j if there exists
an edge sequence (j, i1), (i1, i2), . . . , (is−1, is), (is, i) that is
picked from E . We call G strongly connected if each pair of
nodes in V is linked to each other. A graph G has a rooted
spanning tree if all nodes are linked to j for some j ∈ V .

B. Matrix theory

Given a square matrix A ∈ Rn×n, we say that A is Hurwitz
stable (resp. Schur stable) if Re[λi(A)] < 0 (resp. |λi(A)| <
1) for any i, and it is marginally stable (resp. marginally Schur
stable) if Re[λi(A)] ≤ 0 (resp. |λi(A)| ≤ 1) and λi(A) such
that Re[λi(A)] = 0 (resp. |λi(A)| = 1) is a simple root of
the minimal polynomial of A. A matrix A ∈ Rn×n is said to

be irreducible if there does not exist a permutation matrix P
such that P>AP is block triangular, that is

P>AP 6=
[
A1 A2

0 A3

]
,

where A1 and A3 are nontrivial square matrices. The digraph
G of adjacency matrix A is strongly connected if and only if
A is irreducible.
A ∈ Rn×n is said to be a positive (resp. nonnegative) matrix

if A > 0, (resp. A ≥ 0). Given A ≥ 0, the matrix B = sI−A,
s > 0, is called a Z-matrix (or a negated Metzler matrix).
If in addition s ≥ ρ(A), then B is called an M-matrix. In
particular, an M-matrix B in which s > ρ(A) is nonsingular
and such that −B is Hurwitz stable. If instead s = ρ(A), B is
a singular M-matrix. If in addition A is irreducible, then −B
is also marginally stable.

When A ∈ Rn×n, the comparison matrix of A, denoted
M(A), has |Aii| on the diagonal and −|Aij | in the entry
(i, j), i 6= j. A matrix A is called an H-matrix if its
comparison matrix M(A) is an M-matrix. A is said diagonally
dominant (by rows, omitted thereafter) if |Aii| ≥

∑
j 6=i |Aij |,

i = 1, . . . , n.
A ∈ Rn×n is said to have corank d if the dimension of

the kernel space of A, ker(A), is d. A is called normal if
AA> = A>A. A matrix A is said range symmetric [35] if
ker(A) = ker(A>) (and hence range(A) = range(A>)).

If A ∈ Rn×n is symmetric, it is called positive definite (pd)
if x>Ax > 0 for all x ∈ Rn, x 6= 0, and positive semidefinite
(psd) if x>Ax ≥ 0 for all x ∈ Rn. A pd (resp. psd) matrix A
is sometimes indicated A � 0 (resp. A � 0).

C. Perron-Frobenius property and eventual positivity

Definition 1 (Perron-Frobenius property) A matrix A ∈
Rn×n is said to have the (strong) Perron-Frobenius (PF)
property, denoted A ∈ PF , if ρ(A) is a simple real positive
eigenvalue of A such that ρ(A) > |λ| for all λ ∈ Λ(A),
λ 6= ρ(A), and the corresponding right eigenvector is positive.

The eigenvalue λ = ρ(A) is often referred to as the PF
eigenvalue.

Definition 2 (Eventually positive) A matrix A ∈ Rn×n is
called Eventually Positive (EP) if there exists t0 ∈ Z≥ such
that At is positive for all t ≥ t0.

Following [36], EP matrices will be denoted A
∨
> 0. The fol-

lowing necessary and sufficient condition relates EP matrices
and PF property.

Theorem 1 ([21], Theorem 2.2) For A ∈ Rn×n the following
are equivalent:

1) Both A, A> ∈ PF;
2) A

∨
> 0;

3) A>
∨
> 0.

Also the following lemma will be useful later on.



4

Lemma 1 ([12], Lemma 1) Consider A
∨
> 0 and denote v >

0 its right PF eigenvector. Then any eigenvector v1 of A such
that v1 > 0 must be a multiple of v.

Recall that a Metzler matrix (i.e., a negated Z-matrix) is
characterized by having a nonnegative exponential: eAt =∑∞
k=0

Aktk

k! ≥ 0 ∀ t ≥ 0 [22]. A generalization of exponential
nonnegativity is given by the following definition.

Definition 3 (Eventually exponentially positive) A matrix
A ∈ Rn×n is called Eventually Exponentially Positive (EEP)
if there exists t0 ∈ R≥ such that eAt is positive for all
t ≥ t0.

The relationship between EP and EEP is provided in the
following lemma, which states that EEP matrices are EP
matrices with translated eigenvalues.

Lemma 2 ([22], Thm 3.3) A matrix A ∈ Rn×n is EEP if and
only if ∃ d ∈ R≥0 such that A+ dI

∨
> 0.

EP and EEP matrices generalize respectively positive and Met-
zler matrices to matrices having some negative off-diagonal
entries but still obeying the PF property. In particular, in this
paper EP matrices are used to study discrete-time dynamics,
and EEP matrices to study continuous-time dynamics. In a way
similar to what is done for positive/Metzler matrices, when
dealing with EP matrices we consider as dominant eigenvalue
the spectral radius (i.e., the PF eigenvalue), while when dealing
with EEP matrices the dominant eigenvalue becomes the one
with largest real part (i.e., the spectral abscissa of −L).

D. Eventually stochastic matrices and signed graphs
Recall that a matrix W is row (resp. column) stochastic

if W1 = 1 (resp. 1>W = 1>), 0 ≤ wij ≤ 1, and doubly
stochastic if it is both row and column stochastic.

Definition 4 (Eventually stochastic) A matrix W ∈ Rn×n
is called Eventually Stochastic (ES) if W is EP and W1 =
1. If, moreover, W>1 = 1, W is called Eventually Doubly
Stochastic (EDS).

ES matrices are used to specialize EP matrices to discrete-
time dynamics of consensus type (see next Section for the
details). Also an ES matrix W can be associated to a signed
graph in a natural way by treating W as adjacency matrix
of the graph. Positive/negative diagonal elements (i.e., self-
loops) are possible for ES matrices, see examples below. In
the special case of discrete-time consensus dynamics which is
an Euler discretization of a continuous-time system, then the
W and L associated to the same signed graph are obviously
linked by W = I − εL, where the sampling step size is ε ∈
(0, 1/maxi(Lii)).

The following lemma follows from the lemma in Sect. VI.C
of [12], and from Theorem 1 and Definition 1.

Lemma 3 If W is ES, then ρ(W ) = 1 is a simple positive
eigenvalue of W such that ρ(W ) > |λ| for all λ ∈ Λ(W ),
λ 6= ρ(W ), and the corresponding right and left eigenvectors
are positive.

E. Signed Perron-Frobenius property

Definition 5 (Signed Perron-Frobenius property) A matrix
A ∈ Rn×n is said to have the (strong) signed PF property,
denoted A ∈ SPFn, if ρ(A) is a simple real positive
eigenvalue of A such that ρ(A) > |λ| for all λ ∈ Λ(A),
λ 6= ρ(A), and the corresponding right eigenvector vr is such
that |vr| > 0.

The special case that interests us is when A, A> ∈ SPFn
and both v` and vr, the left and right eigenvectors associated
to ρ(A), have the same sign pattern.

Theorem 2 (Proposition of Sect. V of [12]) Given A ∈ Rn×n,
then the following are equivalent:

(i) A, A> ∈ SPFn, and v`, vr such that [v`]i[vr]i > 0
∀ i = 1, . . . , n, or [v`]i[vr]i < 0 ∀ i = 1, . . . , n;

(ii) ∃S = diag(s), with s =
[
s1 . . . sn

]>
, si = ±1, such

that SAS
∨
> 0.

The matrix S = diag(s) in the previous theorem is called a
diagonal signature matrix, of signature s. For this special case
we shall use the following special definitions.

Definition 6 A matrix A ∈ Rn×n is said
1) Signed Eventually Positive (SEP) if ∃ a diagonal signa-

ture matrix S such that SAS is EP;
2) Signed Eventually Exponentially Positive (SEEP) if ∃ a

diagonal signature matrix S such that SAS is EEP;
3) Signed Eventually Stochastic (SES) if ∃ a diagonal sig-

nature matrix S = diag(s) such that SAS is ES and
As = s.

III. CONSENSUS ON TIME-INVARIANT SIGNED DIGRAPHS

A. Problem formulation

Consider a signed digraph G over V . The state vector of the
agents at time t is given by x(t) ∈ Rn, with [x(t)]i assigned
to agent i for all i ∈ V . Consider the following two consensus
protocols:

1. Continuous-time protocol. If L is the signed Laplacian
(1) associated to G, the system we consider is

ẋ = −Lx . (2)

2. Discrete-time protocol. Denote W the signed adjacency
matrix associated to G, with the property that W1 = 1.
The discrete-time protocol is then

x(t+ 1) = Wx(t). (3)

Definition 7 We say that the system (2) or (3) achieves
consensus if, for all x(0) ∈ Rn, there exists α ∈ R such
that x∗ = limt→∞ x(t) = α1.

Problem of interest: find conditions on the signed L and W
that guarantee that the systems (2) and (3) achieve consensus.

The presence of signs in L and W complicates things
with respect to the unsigned case. For instance, for signed
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Laplacians L we have the following easily verifiable properties
(similar properties hold also in discrete-time).

Proposition 1 Consider a signed, strongly connected digraph
G. Then for the corresponding Laplacian (1) we have

1) 0 is always an eigenvalue of right eigenvector 1;
2) The multiplicity of the 0 eigenvalue can be ≥ 1;
3) L need not be diagonally dominant;
4) −L need not be marginally stable;
5) The quadratic form x>Lx need not be nonnegative, i.e.,

(L+ L>)/2 need not be psd.

The proof is in Appendix A.
As a consequence, L and W can become unstable, and no

longer lead to consensus in (2) and (3).

B. Continuous-time case

In this section we first show that for signed graphs a
graphical property like connectivity is no longer a character-
ization of Laplacian rank (Example 1) and hence no longer
enough by itself to characterize consensus, while instead an
algebraic property like marginal stability (of corank 1) still is
(Lemma 4). We then present a general sufficient condition for
consensus on digraphs (Theorem 4) based on PF properties,
and a necessary and sufficient condition under the more
stringent assumption of weight balance (Corollary 1).

From Proposition 1, when G is a signed graph, L may fail
to be diagonally dominant (technically, L need not be an H-
matrix), which may or may not lead to loss of stability of
−L, in a way which is subtle to check, especially since there
is no longer a correspondence between irreducibility of the
Laplacian and its corank (Property 2 of Proposition 1), as the
following example shows.

Example 1 Consider a complete, undirected, signed graph G
whose Laplacian is

L =


3 −1 −1 −1
−1 1 1 −1
−1 1 1 −1
−1 −1 −1 3

 .
It is Λ(L) = {0, 0, 4, 4} and 1,

[
0 1 −1 0

]>
are both

eigenvectors in ker(L), and 0 has multiplicity 1 in the minimal
polynomial of L. Hence L is marginally stable of corank 2.
See also [37] for related observations. �

Also a loss of rank can lead to loss of consensus, even in
presence of marginal stability. The next lemma highlights the
key role of the corank of L, which for signed graphs replaces
irreducibility.

Lemma 4 Given the time-invariant system (2) with L a signed
Laplacian matrix, consensus is achieved if and only if −L is
marginally stable of corank 1.

The proof is in Appendix A.

Example 1 (cont’d) In this example it is limt→∞ e−Lt 6= 1c>,
hence the system (2) does not converge to consensus for this
corank 2 Laplacian, in spite of marginal stability. �

Our task in the following is therefore to determine con-
ditions that guarantee both the marginal stability and the
correct corank of −L. We first summarize the known results
for undirected graphs, and then develop our new results for
digraphs, expanded from their preliminary presentation in [13].

1) Signed undirected graph case: The case of G signed
and undirected has been studied extensively in the literature,
mostly in terms of the so-called effective resistance matrix
[10], [25], [4]. Following [13] and [3], here we express instead
the condition of L psd in terms of EEP matrices.

Theorem 3 ([3], [13]) Consider an undirected signed graph
G of Laplacian L. L is psd of corank(L) = 1 (and hence −L
is marginally stable of corank(L) = 1) iff −L is EEP.

The proof can be found in [13], Theorem 3.

2) Signed digraph case: In the signed digraph case, the
conditions we obtain are no longer necessary and sufficient
for marginal stability of −L.

Theorem 4 Consider a signed digraph G, and the corre-
sponding Laplacian L. If −L is EEP, then −L is marginally
stable of corank 1, and the system (2) converges to

x∗ = lim
t→∞

x(t) =
v>` x(0)1

v>` 1
,

where v` is the left eigenvector of L relative to 0. Viceversa,
if −L is marginally stable and of corank 1 then ∃ a scalar
d ≥ 0 such that dI − L ∈ PF .

The proof is in Appendix A.

Remark 1 The gap between the two conditions of Theorem 4
corresponds to matrices L s.t. B = dI − L ∈ PF for some
d ≥ 0, but B> /∈ PF for all d ≥ 0. The stability of such class
of Laplacians cannot be determined a priori, as the following
two examples show.

Example 2 In correspondence of

L =


−0.4 0.7 0 −0.3
−1.4 1.6 0.2 −0.4
−0.7 0 2.8 −2.1

0 0 −1.3 1.3


it is Λ(L) = {0, 0.7325 ± 0.1220i, 3.8349}, i.e., −L is
marginally stable, even though the left eigenvector associated
to 0 is not positive. For d > 1.92, B = dI − L ∈ PF but
B> /∈ PF . Notice also that L has both positive and negative
values on the diagonal. �

Example 3 For

L =


1.4 −1.9 0.5 0
0 1 0 −1

0.3 −0.2 0.1 −0.2
−1.8 0 0 1.8


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it is Λ(L) = {−0.0890, 0, 2.1945 ± 1.2509i}, i.e., −L is
unstable. Clearly x>Lx is not nonnegative. Also in this case
the left eigenvector associated to 0 is not positive, and, for
d > 2.6, B = dI − L ∈ PF but B> /∈ PF . �

The following is instead an example of EEP matrix.

Example 4 For

L =


1 −1 0 0
0 2.6 −2.6 0
−0.3 0 1.4 −1.1
−0.9 0.2 −0.9 1.6


we have Λ(L) = {0, 1.6956±0.9452i, 3.2089}. For d ≥ 1.61

it is B = dI − L
∨
> 0. �

In the case of L weight balanced, however, there is no gap
between necessity and sufficiency.

Corollary 1 Consider a signed digraph G such that the corre-
sponding Laplacian (1) is weight balanced. Then the following
conditions are equivalent:

(i) −L is EEP;
(ii) −L is marginally stable of corank 1;

Furthermore, if L is normal then (i) and (ii) are equivalent to
(iii) Ls = (L+ L>)/2 is psd of corank 1.

The proof is in Appendix A.

Remark 2 Corollary 2 of [13] erroneously claims that the
equivalence (ii) ⇐⇒ (iii) in Corollary 1 is valid in the more
general case of weight balance L, which is not true. Only one
direction is valid ((iii) =⇒ (ii)), as shown in Corollary 2. As
for the other direction, a complication arises for instance from
the fact that for L weight balanced but not normal Ls may
acquire negative diagonal elements even if −L is marginally
stable. Ls with negative diagonal elements obviously cannot
be psd. However, even when Ls has positive diagonal, it is
not guaranteed to be psd, see Example 5. Normality of L
guarantees instead psd of its symmetric part, although it is
not necessary, see Example 6.

Corollary 2 If Ls is psd of corank 1, then L is weight
balanced and marginally stable of corank 1.

The proof is in Appendix A.

Example 5 For

L =


0.23 0 −0.28 0.05
−0.01 0.03 0.02 −0.04
0.05 −0.03 0.04 −0.06
−0.27 0 0.22 0.05


it is Λ(L) = {0, 0.1443 ± 0.1859i, 0.0514}, i.e., −L is
marginally stable of corank 1. Moreover, L1 = L>1 = 0

and, for d > 0.1919, B = dI − L
∨
> 0. However, Λ(Ls) =

{−0.0446, 0, 0.0404, 0.3441}, i.e., Ls is not psd. �

Example 6 For

L =


1 1 −1 −1
−1 1 0 0
−1 −1 2 0
1 −1 −1 1

 ,
which is not normal, it is Λ(L) = {0, 1.5 ± 1.323i, 2},
i.e., −L is marginally stable of corank 1, and Λ(Ls) =
{0, 0.7192, 1.5, 2.7808}, i.e., Ls is psd of corank 1. �

Observe that Theorem 4 and Corollary 1 do not explicitly
assume that G is strongly connected. As already mentioned,
it follows from Property 2 in Proposition 1 that for signed
graphs strong connectivity of G (and irreducibility of L) does
not always lead to corank(L) = 1, see Example 1. Similarly,
corank(L) = 1 by itself need not imply L irreducible, even
though it implies the existence of a rooted spanning tree.
Irreducibility follows if in addition L is weight balanced. In
particular, irreducibility of L (and strong connectivity of G)
are implied by any of the conditions (i) or (ii) of Corollary 1.
These properties are formalized in the following lemma.

Lemma 5 Let G be a signed digraph with Laplacian L.
1) If L is of corank 1, then G has a rooted spanning tree.
2) If −L is EEP or if L is weight balanced and of corank

1, then L is irreducible (and G is strongly connected).

The proof is in Appendix A.

C. Discrete-time protocol

In this section we use the notion of ES to establish equiva-
lent results for the discrete-time system (3) on a signed graph
G. Since neither the undirected graph case nor the digraph case
have been analyzed in the literature so far, in this section we
discuss both in detail. In particular, we provide a necessary
and sufficient condition for consensus on undirected graphs
(Theorem 5), while for digraphs we provide a general suffi-
cient condition (Theorem 6), and a necessary and sufficient
condition for the special case of weight balance (Corollary 3).
We start by observing that also in this case the graphical point
of view by itself no longer suffices: irreducibility of W does
not guarantee simplicity of the dominant eigenvalue, which in
turn may hamper consensus even though W is still marginally
Schur stable.

Example 7 Consider W = I − L/10, where L is given
in Example 1. By construction W1 = W>1 = 1 and W
irreducible. Nevertheless, Λ(W ) = {0.6, 0.6, 1, 1}, i.e., the
dominant eigenvalue has multiplicity 2 and W is marginally
Schur stable. �

Irreducibility of W follows, e.g., when we have the ES
property.

Lemma 6 Consider a signed digraph G of adjacency matrix
W such that W1 = 1. If W is ES or if W is weight balanced
with λ(W ) = 1 which is simple and strictly dominant, then
W is irreducible (and G strongly connected).
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Since W ES implies W EP, the proof resembles that of
Lemma 5 and is therefore omitted.

We now move to consensus. The following lemma states
that consensus is equivalent to marginal Schur stability of
W plus simplicity and strict dominance of the λ(W ) = 1
eigenvalue.

Lemma 7 Consider the system (3) and let the signed weighted
adjacency matrix W satisfy W1 = 1. Consensus is achieved
if and only if W is marginally Schur stable with the eigenvalue
λ(W ) = 1 which is simple and strictly dominant.

The proof is in Appendix A.

Example 8 Consider W = I − L/2, where L is given in
Example 1. By construction W1 = W>1 = 1. Λ(W ) =
{−1, −1, 1, 1}, i.e., ρ(W ) = |λi(W )| for all i. W is
marginally stable, but simplicity and strict dominance are
missing. Since limt→∞W t does not exist, the system (3)
does not converge to consensus. If instead we consider W
of Example 7, we have strict dominance of λ(W ) = 1, but
with multiplicity 2. Also here no consensus is achieved for the
system (3). �

Apart from consensus, when W ≥ 0, a closely related
version of (3) is commonly used to describe transition proba-
bilities in Markov chains. Clearly when W is not nonnegative
then any probabilistic interpretation associated to W is lost.
However, if W t > 0 for t ≥ t0 (i.e., W is EP), any
sufficiently long downsampling of the system (3) can still
be considered a well-posed transition matrix, provided W is
eventually stochastic.

1) Signed undirected graph case: The following necessary
and sufficient condition is the analogue of Theorem 3 for
discrete-time systems.

Theorem 5 Consider an undirected signed graph G of signed
adjacency matrix W which is symmetric, and such that W1 =
1. W is marginally Schur stable with λ(W ) = 1 simple and
strictly dominant iff W is EDS.

The proof is in Appendix A.

2) Signed digraph case: As for Laplacians, on signed
digraphs the sufficient condition for consensus that can be
obtained from ES matrices is in general not a necessary
condition.

Theorem 6 Consider a signed digraph G of adjacency matrix
W such that W1 = 1. If W is ES, then it is marginally
Schur stable with λ(W ) = 1 simple and strictly dominant,
and the system (3) converges to consensus. Viceversa, if W is
marginally Schur stable with λ(W ) = 1 simple and strictly
dominant, then W ∈ PF .

The proof is in Appendix A.
The condition of eventual stochasticity in Theorem 6 is not

necessary for marginal stability with λ(W ) = 1 simple and
strictly dominant (see e.g. Example 4 in [13]), while instead

the weaker condition W ∈ PF does not suffice for marginal
stability (see e.g. Example 5 in [13]).

Also for signed stochastic matrices the weight balanced case
(here W1 = W>1 = 1) leads instead to a necessary and
sufficient condition.

Corollary 3 Consider a signed digraph G(W ) such that W is
weight balanced and W1 = 1. Then the following conditions
are equivalent:

(i) W is EDS;
(ii) W is marginally Schur stable with λ(W ) = 1 simple and

strictly dominant;
Furthermore, if W is normal then (i) and (ii) are equivalent
to
(iii) I −W>W is psd of corank 1.

The proof is in Appendix A.

IV. CONSENSUS ON TIME-VARYING SIGNED DIGRAPHS

A. Problem formulation

Given an agent set V = [n], we consider a group of signed
digraphs G = {G1,G2, . . . ,Gm} over V . We consider two con-
sensus protocols, one in continuous-time and one in discrete-
time, in which the time-varying system is approximated as a
switching of the underlying graph over G.

1. Continuous-time protocol. For each graph Gk, the as-
sociated signed Laplacian matrix Lk is defined as in
(1). The corresponding set of signed Laplacian matrices
is denoted L = {L1, L2, . . . , Lm}. The system can be
written as

ẋ = −Lσ(t)x, x ∈ Rn, (4)

where σ(·) is a switching signal, which is a piecewise
constant map, i.e., σ : R≥ 7→ [m]. Piecewise constant
means that any finite interval of R≥ can have at most
finitely many discontinuities, meaning that Zeno-like phe-
nomena are avoided [19].

2. Discrete-time protocol. The corresponding set of
signed weighted adjacency matrices is denoted W =
{W1,W2, . . . ,Wm}, where

Wk1 = 1, ∀k ∈ [m].

The discrete-time system is

x(t+ 1) = Wσ(t)x(t), t ∈ Z≥, x(t) ∈ Rn, (5)

where σ : Z≥ 7→ [m] is also a switching signal with the
same properties.

For the time-varying systems (4) and (5), in order to achieve
consensus in the sense of Definition 7 for an arbitrary switch-
ing signal σ(·), it is convenient to introduce the following
notion of consensus set.

Definition 8 (Consensus set) The set L (resp. W) is said to
be a consensus set for the system (4) (resp. (5)) if consensus is
achieved for any arbitrary piecewise constant switching signal
σ(·).
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Problem of interest for this section: find conditions under
which the set L (resp. W) is a consensus set for the system
(4) (resp. (5)).

The rest of this section contains our main results for
both continuous-time and discrete-time time-varying proto-
cols. Several of these results were first presented in [32]. Here
they are rearranged and streamlined in a more efficient way.
Only the digraph case is treated in detail, as the undirected
graph case follows trivially.

B. Continuous-time protocol

In this subsection we first provide two necessary conditions
for consensus sets on digraphs (Lemma 8 and Corollary 4),
followed by a sufficient condition (Theorem 7).

For the system (4), in order to achieve consensus under any
switching signal, each subsystem ẋ = −Lkx must achieve
consensus. This observation leads to the following necessary
condition, whose proof is a straightforward application of
Lemma 4.

Lemma 8 If L is a consensus set for the system (4), then −Lk
is marginally stable of corank 1 for all k ∈ [m].

In the following we will focus on weight balanced digraphs,
i.e., L>k 1 = 0, k ∈ [m]. As argued above, in order to make L
a consensus set, each Lk must be marginally stable of corank
1. In addition, if Gk is weight balanced, by Corollary 1 and
Lemma 5, the following corollary of Lemma 8 is obtained.

Corollary 4 Suppose that each Gk ∈ G is weight balanced.
If L is a consensus set, then for all k ∈ [m], −Lk is EEP,
which implies that Gk is strongly connected.

However, only EEP and weight balance of each Lk is not
enough. This can be seen from the following example.

Example 9 Consider the system (4) on G = {G1,G2}, with
the following Laplacians

L1 =


0.23 0 −0.28 0.05
−0.01 0.03 0.02 −0.04
0.05 −0.03 0.04 −0.06
−0.27 0 0.22 0.05

 ,

L2 =


0.96 −0.27 0 −0.69
−0.44 0.44 0 0
−0.43 −0.17 0.07 0.53
−0.09 0 −0.07 0.16

 .
L1, L2 are both weight balanced. Moreover, 0 is a simple
rightmost eigenvalue of −L1,−L2, which by Corollary 1
means that −L1,−L2 are EEP. Let the switching signal be

σ(t) =

{
1, if t ∈ [2d, 2d+ 1);
2, if t ∈ [2d+ 1, 2d+ 2),

d = 0, 1, . . .

Let the initial state be x(0) = [−1, 2,−4, 7]>. Fig. 1 shows
the trajectory of (x1(t), x4(t)). It is seen that the switching
system diverges. �

One condition we can add to EEP is normality of the signed
Laplacians.

Fig. 1. Two-dimensional slice of a trajectory for Example. 9. The dark dot
represents the initial state. Line color changes every time the system switches.

Remark 3 Given a normal matrix, any real right eigenvector
is also a left eigenvector corresponding to the same eigenvalue
[38]. Thus, any normal signed Laplacian is weight balanced.

The following theorem is the main result of this Section.

Theorem 7 Consider a set of signed digraphs G =
{G1, . . . ,Gm} with the corresponding Laplacians L =
{L1, . . . , Lm}. If −Lk is a EEP, normal matrix for each
k ∈ [m], then L is a consensus set for the system (4).

The proof is in Appendix B.

Remark 4 Any symmetric matrix is normal. Therefore, if for
all k ∈ [m], −Lk is symmetric and EEP, L is then a consensus
set.

Note that the proof of Theorem 7 is similar to that in [39].
The requirement that Lk +L>k , k ∈ [m], is psd of corank 1 is
key to the proof. This condition is equivalent to the existence
of a common quadratic Lyapunov function with matrix which
is diagonal and equal to I . To satisfy this condition, the
normality of each Laplacian is sufficient but not necessary,
see Sect. V for a counterexample.

One may also ask if the condition Lk+L>k is psd of corank
1 for all k ∈ [m] is a necessary condition. The answer is no,
see the following example.

Example 10 Consider the system (4) on G = {G1,G2} with
the corresponding Laplacians L1 given in Example 9 and L2 =
I − 1

411
>. It can be checked that L1 + L>1 is not psd. For

any given switching signal σ(t), without loss of generality,
suppose the signals switch in the sequence 1, 2, 1, 2, . . . with
switching time 0 < t1 < t2 < t3 < . . . . Let

t1 = s1, t2 − t1 = τ1, t3 − t2 = s2, t4 − t3 = τ2, . . .
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The solution can be explicitly written as

x(t) =

[(1− e
−

κ∑
d=1

τd
) 1
n11

> + e
−

κ∑
d=1

τd
e
−(s′+

κ∑
d=1

sd)L1

]x(0),

if t =
κ∑
d=1

(sd + τd) + s′, 0 ≤ s′ < sκ+1;

[(1− e
−τ ′−

κ∑
d=1

τd
) 1
n11

> + e
−τ ′−

κ∑
d=1

τd
e
(−

κ+1∑
d=1

sd)L1

]x(0),

if t =
κ∑
d=1

(sd + τd) + sκ+1 + τ ′, 0 ≤ τ ′ < τκ+1.

Then

lim
t→∞

x(t) = [(1−e
−
∞∑
d=1

τd
)

1

n
11>+e

−
∞∑
d=1

τd
e
−(
∞∑
d=1

sd)L1

]x(0).

(6)
It is easy to see that:
• if

∑∞
d=1 τd = ∞, the second part of (6) is 0, which yields

limt→∞ x(t) = 1
n11

>x(0);
• if

∑∞
d=1 τd 6=∞, it must be

∑∞
d=1 sd =∞. We then have

e
−(
∞∑
d=1

sd)L1

=
1

n
11>,

since −L1 is EEP. According to (6), it holds limt→∞ x(t) =
1
n11

>x(0).
No matter in which case, it always holds that limt→∞ x(t) =
1
n11

>x(0). As σ(t) is arbitrarily chosen, L = {L1, L2} is a
consensus set. �

C. Discrete-time protocol

The discrete-time case is investigated analogously to the
continuous-time one: two necessary conditions for consensus
sets are presented first (Lemma 9 and Corollary 5), followed
by a sufficient condition (Theorem 8).

For the discrete-time system (5), in order to achieve con-
sensus under any switching signal, each subsystem x(t+1) =
Wkx(t) must achieve consensus, which leads to the following
necessary condition.

Lemma 9 Suppose Wk1 = 1 for all k ∈ [m]. If W is a
consensus set for the system (5), then for all k ∈ [m], Wk

is marginally Schur stable with λ(Wk) = 1 as a simple and
strictly dominant eigenvalue.

The lemma is proven straightforwardly from Lemma 7. From
Theorem 6, it implies that it must be Wk ∈ PF ∀ k ∈ [m]. In
the weight balanced case, combining Lemma 9 with Lemma 6
a corollary follows.

Corollary 5 Suppose that each Gk ∈ G is weight balanced.
If W is a consensus set, then for all k ∈ [m], Wk is EDS and
hence EP, which implies that each Gk is strongly connected.

However, just like in the continuous-time case, only EP/EDS
is still not enough, as the combined switching system may still
diverge, see e.g. Example 3 of [32].

Theorem 8 Consider a signed digraph set G = {G1, . . . ,Gm}
with the corresponding weighted adjacency matrices W =

{W1, . . . ,Wm}. If, for all k ∈ [m], Wk is a ES and normal
matrix, then W is a consensus set for the system (5).

The proof is in Appendix B.

Remark 5 As in Remark 4, if Wk is symmetric and ES for
all k ∈ [m], W is a consensus set.

According to the proof of Theorem 8, we can see that it
is enough to have I − W>k Wk psd and of corank 1 for all
k ∈ [m]. Therefore, the condition that each Wk is normal
is sufficient but not necessary, which is also shown in the
following example.

Example 11 Let G = {G1,G2} corresponding to W =
{W1,W2}, with

W1 =

 0.1 0.2 0.7
0.3 0.5 0.2
0.6 0.3 0.1

 , W2 = W>1 .

W1 and W2 are positive and doubly stochastic. Obviously W
is a consensus set for the system (5) (since W is a finite set of
stochastic matrices with positives columns [40]), but W1 and
W2 are not normal. �

Again, also the condition that I − W>k Wk is psd and of
corank 1 for all k ∈ [m] is not necessary, see e.g. Example 4
of [32].

V. MORE GENERAL SUFFICIENT CONDITIONS FOR THE
TIME-VARYING CASE

It is well-known [18], [19] that a sufficient condition for a
collection of Hurwitz (or Schur) stable linear systems to be
stable as a switching system is to have a Common Lyapunov
Function (CLF). As the proofs show, also the conditions of
Theorems 7 and 8 are based on the existence of a CFL, which
is diagonal and with diagonal weights all equal to 1. While
such sufficient condition is of interest per se, as it has an
equivalent algebraic formulation in terms of EEP/ES normal
matrices, it can be relaxed to any (non-diagonal) CLF, allowing
us to relax the assumption of normality of the Lk and Wk.
In this way, the class of switching signed graphs for which
time-varying consensus is achieved is enlarged significantly.
Existence of a CLF can be expressed as feasibility of a system
of Linear Matrix Inequalities (LMIs).

In what follows we present a continuous-time LMI condi-
tion for consensus sets based on quadratic CLFs (Theorem 9)
and one based on CLFs which are homogeneous polynomials
of order higher than 2 (Corollary 6), followed by the same
conditions for discrete-time systems (Theorem 10 and Corol-
lary 7).

A. Continuous-time case

Denote Q ∈ Rn−1×n a matrix whose rows form an
orthonormal basis for span(1)⊥, i.e.,

QQ> = In−1, Q1 = 0.
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Theorem 9 Consider a set of signed digraphs G =
{G1, . . . ,Gm} with the corresponding Laplacians L =
{L1, . . . , Lm}. Assume −Lk is a weight balanced EEP matrix
for each k ∈ [m]. If ∃ P = P> � 0 such that

−QLkPQ> −QPL>k Q> ≺ 0, k = 1, . . . ,m (7)

then V (x) = x>Px is a CLF and hence L is a consensus set
for the system (4).

The proof is in Appendix B.

Example 12 None of the following two weight-balanced
Laplacian matrices whose negation is EEP

L1 =

 0.3388 −0.5673 0.2285
0 0.5673 −0.5673

−0.3388 0 0.3388


L2 =

 0.3937 −0.6570 0.2633
−0.1862 0.6570 −0.4708
−0.2075 0 0.2075


is normal. For these Laplacians, taking

P =

72.7760 18.9053 −6.5237
18.9053 68.4564 −2.2041
−6.5237 −2.2041 93.8854

 ,
V (x) = x>Px is a CLF. �

Similarly to what happens to switching systems of Hurwitz
matrices, existence of a quadratic CLF is sufficient but not
necessary, and higher order homogeneous polynomial CLF can
be used to relax the conservatism of quadratic design [26].
Following [41], to build a 2r-th order homogeneous CLF we
can make use of (r-times) Kronecker products and Kroneker
sums, defining

x̂ = x⊗ . . .⊗ x

L̂k = Lk ⊕ . . .⊕ Lk
Q̂ = Q⊗ . . .⊗Q.

Easy calculations then give the following extension of Theo-
rem 9.

Corollary 6 Consider a set of signed digraphs G =
{G1, . . . ,Gm} with the corresponding Laplacians L =
{L1, . . . , Lm}. Assume −Lk is a weight balanced EEP matrix
for each k ∈ [m]. If ∃ P̂ ∈ Rnr×nr , P̂ = P̂> � 0 such that

−Q̂L̂kP̂ Q̂> − Q̂P̂ L̂>k Q̂> ≺ 0, k = 1, . . . ,m

then V (x) = x̂>P̂ x̂ is a CLF and hence L is a consensus set
for the system (4).

Example 13 The following two signed Laplacian matrices

L1 =

 0.6667 0.2440 −0.9107
−0.9107 0.6667 0.2440
0.2440 −0.9107 0.6667


L2 =

 2.6111 0.4746 −3.0857
−3.0857 −0.3056 3.3913
0.4746 −0.1691 −0.3056



do not admit a quadratic CLF, but they admit a CLF which is a
homogeneous polynomial of order 4. In fact their projections
L̄k = QLkQ

> correspond to a famous example of 2D
switching system not admitting a quadratic CLF [42]:

L̄1 =

[
1 1
−1 1

]
, L̄2 =

[
1 6
−1/6 1

]
.

�

B. Discrete-time case

Also for the discrete-time case the consensus set stability
can be extended beyond normality via CLF.

Theorem 10 Consider a set of signed digraphs G =
{G1, . . . ,Gm} with the corresponding EDS matrices W =
{W1, . . . ,Wm}. If ∃ P = P> � 0 such that

QW>k PWkQ
> −QPQ> ≺ 0, k = 1, . . . ,m (8)

then V (x) = x>Px is a CLF and hence W is a consensus
set for the system (5).

The proof is in Appendix B.
Denoting

Ŵk = Wk ⊗ . . .⊗Wk,

we obtain also the discrete-time equivalent of Corollary 6.

Corollary 7 Consider a set of signed digraphs G =
{G1, . . . ,Gm} with the corresponding EDS matrices W =
{W1, . . . ,Wm}. If ∃ P̂ ∈ Rnr×nr , P̂ = P̂> � 0 such that

Q̂Ŵ>k P̂ ŴkQ̂
> − Q̂P̂ Q̂> ≺ 0, k = 1, . . . ,m

then V (x) = x̂>P̂ x̂ is a CLF and hence W is a consensus
set for the system (5).

Example 14 The following two signed EDS matrices

W1 =

0.2000 0.1691 0.6309
0.6309 0.2000 0.1691
0.1691 0.6309 0.2000


W2 =

−0.5778 0.0768 1.5010
1.5010 0.5889 −1.0898
0.0768 0.3343 0.5889


do not admit a quadratic CLF, but they admit a CLF which
is a homogeneous polynomial of order 4. In this case their
projections W̄k = QWkQ

> correspond to another known
example of uniformly stable switching system not admitting a
quadratic CLF [43]:

W̄1 =

[
−0.2 −0.4
0.4 −0.2

]
, W̄2 =

[
−0.2 −2.4
1/15 −0.2

]
.

�
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VI. EXTENSION TO BIPARTITE CONSENSUS

Consider a signed digraph G. Given a diagonal signature
matrix S = diag(s), consider the following generalizations of
L and W :

Lb = SLS and Wb = SWS, (9)

and the corresponding generalizations of (2) or (3):

ẋ = −Lbx (10)

and
x(t+ 1) = Wbx(t). (11)

Notice that Lb does not obey to the rule (1). In fact, Lb =
SLS = Σ − SAS, and in general σin

i =
∑n
j=1Aij 6=∑n

j=1[s]i[s]jAij . In matrix form, this reads Lbs = 0. Sim-
ilarly, in place of W1 = 1, we now have Wbs = s.

The systems (10) or (11) are associated to a more general
form of consensus, called bipartite consensus [1].

Definition 9 We say that the system (10) or (11) achieves
bipartite consensus if for all x(0) ∈ Rn, there exist α ∈ R
and a diagonal signature matrix S = diag(s) such that x∗ =
limt→∞ x(t) = αs.

Bipartite consensus corresponds to all agents achieving the
same value in absolute value but possibly with different sign:
[x∗]i = ±α, see [1]. In particular, each signature vector s
determines a “bipartition class”, i.e., a splitting of the n agents
into two disjoint subgroups (up to a global symmetry s→ −s).

Several properties of Lb and Wb follow straightforwardly
from (9) and Proposition 1. For instance, for Lb we have:

Proposition 2 Given a signed digraph G, of Laplacian L,
consider the associated matrix Lb in (9) corresponding to
S = diag(s) and the system (10). Then we have:

1) 0 is always an eigenvalue of Lb of right eigenvector s;
2) x(t) converges to αs iff z(t) = Sx(t) converges to α1,

i.e., bipartite consensus is achieved by x(t) iff consensus
is achieved by z(t).

3) bipartite consensus is achieved iff −Lb is marginally
stable of corank 1.

The proof is in Appendix B.
All sufficient conditions for consensus given in the previous

sections can be extended to bipartite consensus, provided we
replace the notions of EP, EEP and ES with SEP, SEEP and
SES. For instance the equivalent of Theorem 4 and Corollary 1
is the following.

Theorem 11 Consider a signed digraph G and a diagonal
signature matrix S = diag(s).
• If −Lb is SEEP (w.r.t. S) then −Lb is marginally stable of

corank 1; Viceversa, if −Lb is marginally stable of corank
1 then ∃ d ≥ 0 such that dI − Lb ∈ SPFn.

• If, in addition, Lbs = L>b s = 0, then the following two
conditions are equivalent:

(i) −Lb is SEEP (w.r.t. S);
(ii) −Lb is marginally stable of corank 1;

• If, in addition, Lb is normal, then (i) and (ii) above are
equivalent to

(iii) (Lb + L>b )/2 is psd of corank 1.

The proof follows straightforwardly once the change of basis
z(t) = Sx(t) is performed.

Remark 6 Recall that a signed digraph is said structurally
balanced if all its directed cycles are positive (i.e., have an
even number of negative edges). As shown in [1], for the
“opposing” signed Laplacian structural balance of the digraph
is a necessary and sufficient condition for bipartite consensus.
The situation is very different for the “repelling” signed
Laplacian L and its generalization Lb we are considering in
this paper. L can attain consensus even in presence of negative
cycles, and it never achieves bipartite consensus. Lb can attain
bipartite consensus even in presence of negative cycles, but it
can also do so when all cycles are positive (in that case the
corresponding L is nonnegative). Cycle sign is irrelevant for
the “repelling” Laplacian L and its generalization Lb; the only
thing that matters is the signature of the right PF eigenvector
s.

Also the time-varying case can be treated analogously,
provided that all switching systems correspond to the same
signature matrix S = diag(s). If we have the collec-
tion of signed digraphs G = {G1, . . . ,Gm} of Laplacians
L = {L1, . . . , Lm}, then consider the generalizations Lb =
{Lb,1, . . . , Lb,m}, Lb,k = SLkS, k ∈ [m], and the system

ẋ = −Lb,σ(t)x, x ∈ Rn, (12)

where σ : R≥ 7→ [m] is a piecewise constant switching signal.

Definition 10 (Bipartite consensus set) The set Lb is said
to be a bipartite consensus set for the system (12) w.r.t. the
signature s if bipartite consensus with node partition given by
s is achieved for any arbitrary piecewise constant switching
signal σ(·).

Proposition 3 The set Lb is a bipartite consensus set for the
system (10) w.r.t. the signature s iff the set L is a consensus
set for the system (2).

Again the proof is immediate with the change of basis
z(t) = Sx(t). All conditions of Sections V and VI can then
be translated into equivalent conditions for bipartite consensus
for Lb.

A similar reasoning applies also to the discrete-time case.

VII. DISCUSSION AND OUTLOOK

In this section we comment on a couple of possible devel-
opments of our work.
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a) Algebraic vs graphical conditions: A remarkable fact
about the “opposing” signed Laplacian studied in [1] is that its
main properties are both algebraic and graphical. Following
[44], we can define qualitative classes of signed adjacency
matrices only based on their sign patterns: the matrices A1

and A2 are said to belong to the same qualitative class Q[A1]
(or Q[A2]) if sgn([A1]ij) = sgn([A2]ij) ∀ i, j = 1, . . . , n. In
particular, all matrices of a qualitative class share the same
property of being – or not being – structurally balanced.
Consequently, all associated “opposing” signed Laplacians in
the qualitative class either converge to bipartite consensus
(when the class is structurally balanced; all L are marginally
stable) or converge to the origin (when the class is unbalanced;
all L are Hurwitz). The consensus and bipartite consensus
conditions considered in this paper for “repelling” signed
Laplacians are instead algebraic but not graphical, as they are
decided by the dominant eigenvalue and by the signature of the
dominant eigenvector. It is rather easy to find counterexamples
of matrices in the same qualitative class (i.e., with identical
sign pattern) but with different asymptotic behaviors. For
instance, if in the unstable signed Laplacian of Example 3 the
(1, 3) entry 0.5 is replaced with 0.1, then the corresponding
signed Laplacian becomes marginally stable of corank 1,
meaning that consensus is achieved. Such counterexamples
are found also for undirected signed graphs. Similarly, show-
ing that a signed Laplacian converges to bipartite consensus
instead of consensus is at the moment impossible in graph-
ical terms, without computing the signature of the dominant
eigenvector. The conclusion is that sharp equivalent graphical
characterizations of all major properties of “repelling” signed
Laplacians do not appear to exist. Except for special graphs
(e.g. trees), what one can find instead are bounds on the
number of positive/negative eigenvalues, based on the number
of negative edges, see [9], [3], [45]. How effective those
bounds are is not clear at the moment.

b) Time-varying consensus beyond consensus set: In
Sections IV and V of the paper, time-varying consensus is
always formulated in terms of consensus sets, i.e., sets L such
that for any switching signal σ(·), Lσ(t) ∈ L is an acceptable
time-varying Laplacian. A weaker condition could be instead
to try to assess consensus for a specific switching pattern σ(·).
The sufficient conditions of Theorem 7 may be potentially
weakened in this case, in a way similar to what happens for
“nonnegative” consensus problems. However, differently from
the “nonnegative” consensus case, switching signed Laplacians
may lead to instability and not just to lack of convergence,
meaning that treating the specific switching pattern case under
weaker conditions is a nontrivial problem. It might require to
define a notion of “uniform marginal stability of corank 1”
and to find conditions implementing it in practice.

VIII. CONCLUSIONS

The conditions provided in this paper for checking the
stability of signed (“repelling”) Laplacians are more general
than those available in the literature, as they hold also for
digraphs, and for time-varying signed Laplacians. They are
also insightful into the structure of these Laplacians, as they

highlight the role of the dominant eigenpair of L. As comput-
ing dominant eigenpairs (through e.g. a power algorithm) is
computationally cheaper than computing the entire spectrum
of L, the tests provide also a computational advantage for large
scale systems.

Also in the time-varying case the behavior of signed
Laplacians is qualitatively different from that of its standard
“nonnegative” counterpart, in the sense that instabilities may
arise due to the time dependence, making it even more relevant
to seek some form of uniform convergence when dealing with
this class of time-varying consensus problems.

APPENDIX A
TIME-INVARIANT DIGRAPHS

Proof of Proposition 1. Property 1 is true by construction.
Properties 2-5 can be shown through counterexamples (Exam-
ples 1-3). �

Proof of Lemma 4. We first prove the necessity. Notice that
0 is an eigenvalue of L, with 1 included in its corresponding
eigenvector space. The system ẋ = −Lx has the explicit
solution x(t) = e−Ltx(0). If consensus is achieved, it must
be limt→∞ e−Lt = 1c> for some c ∈ Rn. Obviously −L
can not have eigenvalues with positive real parts, otherwise
e−Lt will diverge. To prove marginal stability of −L, we
use a contradiction argument. First, assume that 0 is not
a simple root of the minimal polynomial of −L. Without
loss of generalization, assume that L can be decomposed to
L = CJC−1, where J = diag(

[
J1 J2 . . . Js

]
) is the

Jordan canonical form of L, with blocks J1 =

[
0 1
0 0

]
and

J2, . . . , Js corresponding to eigenvalues of L with positive
real part. It then holds e−Lt = Ce−JtC−1, with e−Jt =
diag(

[
e−J1t e−J2t . . . e−Jst

]
). By straightforward cal-

culations, we obtain

e−J1t =

[
1 −t
0 1

]
and

lim
t→∞

diag(
[
(e−J2t . . . e−Jst

]
) = 0.

Therefore,

lim
t→∞

e−Lt = lim
t→∞

C[e−Jt]C−1 = 1c>

is impossible in presence of the term e−J1t. We then get the
contradiction. Second, suppose that di ∈ Λ(−L) for some d ∈
R, where i is the imaginary unit. Without loss of generality,
the Jordan canonical form of L then has a block J1 such that

J1 =

[
di 1
0 di

]
or J1 =

[
di 0
0 −di

]
. Therefore,

lim
t→∞

e−J1t =

[
e−dti ∗

0 e−dti

]
or

[
e−dti 0

0 edti

]
,

where ∗ can be infinity. Again, no matter what case, it
can not be limt→∞ e−Lt = 1c>, leading again to a con-
tradiction. Therefore, −L is marginally stable. To prove in
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addition that L is of corank 1, we use another contradic-
tion argument. Suppose that −L is marginally stable of
corank greater than or equal to 2. Let J = CJC−1, where
J = diag(

[
(J1 . . . Jcorank(L) Jcorank(L)+1 . . . Js

]
)

is the Jordan canonical form of L, with J` = [0] for all
` = 1, . . . , corank(L), and J`, ` > corank(L), corresponding
to eigenvalues of L with positive real parts. Then,

lim
t→∞

e−Lt =

corank(L)∑
`=1

φ`ξ
>
` 6= 1c>, (13)

where φ`, ξ
>
` are respectively the columns and rows of C and

C−1. The contradiction is then obtained and the necessity is
proved. The sufficiency obviously follows from (13). �

Proof of Theorem 4. From Lemma 2, −L EEP means that
∃ a scalar d ≥ 0 such that B = dI − L

∨
> 0. From L1 = 0,

it is B1 = d1 − L1 = d1, i.e., 1 is a right eigenvector of
B of eigenvalue d. If B

∨
> 0 it means that ρ(B) is a simple

eigenvalue of strictly positive left and right eigenvectors vr
and v`. From Lemma 1, it must necessarily be vr = α1
for some scalar α, and therefore ρ(B) = d. Since ρ(B) is
simple, all other eigenvalues of L must have strictly positive
real parts. The value of x∗ follows then straightforwardly. As
for the second implication, if −L is marginally stable and
of corank 1, then 0 = λ1(L) < Re[λi(L)], i = 2, . . . , n,
and 1 is the eigenvector relative to 0. But then, provided
d > maxi=2,...,n

|λi(L)|2
2Re[λi(L)]

, B = dI − L has ρ(B) = d of
eigenvector 1, hence B ∈ PF . �

Proof of Corollary 1. (i) =⇒ (ii): This direction is implied
by Theorem 4.
(ii) =⇒ (i): If −L marginally stable of corank 1, it
follows from the proof of Theorem 4 that for d >

maxi=2,...,n
|λi(L)|2

2Re[λi(L)]
> 0, B = dI −L has ρ(B) = d which

is a simple eigenvalue of right eigenvector 1. L weight bal-
anced implies L1 = L>1 = 0, which means that the argument
can be repeated also for L> leading to B, B> ∈ PF , i.e.,
from Theorem 1, B

∨
> 0 or, from Lemma 2, −L is EEP.

(ii) ⇐⇒ (iii): If L is normal, then there exists an orthonormal
matrix U such that L = UDU>, where, if µ1, . . . , µ` are the
real eigenvalues of L and ν1 ± iω1, . . . , νn−`

2
± iωn−`

2
are its

complex conjugate eigenvalues:

D =



µ1

. . .
µ`

ν1 ω1

−ω1 ν1
. . .

νn−`
2

ωn−`
2

−ωn−`
2

νn−`
2


(14)

If follows that Ls = 1
2 (L + L>) = 1

2U(D + D>)U> and
therefore that Re[λi(L)] = λi(Ls). �

Proof of Corollary 2. First, observe that, since Ls is psd, then
x>Lsx = 0 iff Lsx = 0 [46, Observation 7.1.6.]. Moreover,

since Ls is of corank 1 and L1 = 0 (which implies 1>Ls1 =
0), then ker(Ls) = span(1). Assume by contradiction that L
is not weight balanced, i.e., L>y = 0 with y 6= 1. Then:

0 = y>L>y = y>Lsy =⇒ Lsy = 0 =⇒ y = 1

since ker(Ls) = span(1). Hence, L is weight balanced.
Assume by contradiction that corank(L) 6= 1, i.e., Lx = 0
with x 6= 1. Similarly to the previous case, it is possible to
show that Ls being psd of corank 1 implies x = 1. Since
Ls psd implies L has eigenvalues with nonnegative real part,
marginal stability of −L follows straightforwardly.

Proof of Lemma 5.
1) Let G be a signed digraph with signed Laplacian L (with

at least 2 nodes). First, we establish an equivalent condi-
tion for G to have a rooted spanning tree. In the unsigned
graph case it has been proven, see [47, Theorem 5], that
G (unsigned) has a rooted spanning tree if and only if
for every pair of nonempty, disjoint subsets V1,V2 ⊂ V
there exists a node that is an in-neighbor of V1 or V2
(see also [48]). Since the proof does not depend on the
specific weights on the edges of the graph, it holds also in
the case of a signed graph G. This means that, for every
pair of nonempty, disjoint subsets V1,V2 ⊂ V , after an
adequate permutation, L can be rewritten as

L =

[
L11 L12

0 L22

]
, L12 6= 0, or L =

[
L11 0
L21 L22

]
, L21 6= 0,

assuming an edge from V2 to V1, or from V1 to V2,
respectively.
Now, assume by contradiction that L is of corank 1, but G
does not have a rooted spanning tree. Then, there exists a
pair of nonempty, disjoint subsets V1,V2 ⊂ V , such that,
after an adequate permutation, L can be rewritten as

L =

[
L11 0
0 L22

]
.

Then, L1 = 0 implies that 0 ∈ Λ(L11), 0 ∈ Λ(L22),

and ker(L) = span

([
1card(V1)

0

]
,

[
0

1card(V2)

])
. Conse-

quently, L is not of corank 1.
2) In both statements assume, by contradiction, that L is

reducible, i.e., there exists a permutation matrix P s.t.

P>LP =

[
L11 L12

0 L22

]
.

Assume that −L is EEP, i.e., ∃ d ≥ 0 s.t. B = dI −
L
∨
> 0 (see Lemma 2). Then B is also reducible,

since P>BP =

[
dI − L11 −L12

0 dI − L22

]
. It follows that

(P>BP )t =

[
(dI − L11)t ∗

0 (dI − L22)t

]
for all t ≥ 1,

i.e., P>BP is not EP and, consequently, B is not EP.
Assume that L is weight balanced of corank 1. Then
L1 = L>1 = 0 implies that 0 ∈ Λ(L>11) = Λ(L11) and
that 0 ∈ Λ(L22). Consequently, L is not of corank 1.

�

Proof of Lemma 7. To prove the necessity, we need to prove
that ρ(W ) = 1 and 1 is a simple and strictly dominating
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eigenvalue. As x(t) = W tx(0), we need to analyze W t as
t grows to infinity. From W1 = 1, it is λ(W ) = 1, hence
ρ(W ) ≥ 1. If ρ(W ) > 1, it holds ρ(W t) = (ρ(W ))t → ∞,
i.e., W t diverges as t grows. Therefore, ρ(W ) = 1. The rest
of the proof can be obtained by an argument in the same spirit
as that of Lemma 4 for what concerns both the multiplicity
of λ(W ) = 1 and its strict dominance. The sufficiency is then
obtained repeating the reasoning which led to (13). �

Proof of Theorem 5. W symmetric and marginally Schur
stable with λ1(W ) = 1 simple and strictly dominant implies
|λ1(W )| > |λi(W )|, i = 2, . . . , n. Combined with W1 = 1,
it means that W = W> ∈ PF or, from Theorem 1, that
W is EDS. Viceversa, W EDS means W

∨
> 0, i.e., ρ(W )

is a simple strictly dominant eigenvalue of W with positive
eigenvector. Since it is also W1 = 1, from Lemma 1, it must
be that ρ(W ) = 1 is the eigenvalue of multiplicity 1 strictly
dominating all other eigenvalues. Hence W is marginally
Schur stable. �

Proof of Theorem 6. W ES implies that W1 = 1 and,
since W

∨
> 0, λ1(W ) = ρ(W ) = 1 must be a simple strictly

dominant eigenvalue. Hence |λi(W )| < 1, i = 2, . . . , n,
meaning that W is also marginally Schur stable. As for the
other direction, if W such that W1 = 1 is marginally Schur
stable with λ(W ) = 1 simple and strictly dominant, it means
that |λi(W )| < 1, i = 2, . . . , n, i.e., ρ(W ) = 1, hence
W ∈ PF . �

Proof of Corollary 3. (i) ⇐⇒ (ii) Follows combining
Theorem 6 with W1 = W>1 = 1.
(ii) ⇐⇒ (iii) If W is normal, then it can be decomposed as
W = UDU> where U is orthonormal and D similar to (14),
with µ1 = 1 and |µi| < 1, i = 2, . . . , `, and

√
ν2j + ω2

j <

1, j = 1, . . . , n−`2 . From this, in fact, we have W>W =
U(D>D)U> , and I−W>W has eigenvalues 0, 1−µ2

i > 0,
i = 2, . . . , `, and 1 − (ν2j + ω2

j ) > 0, j = 1, . . . , n−`2 , i.e.,
I −W>W is psd of corank 1. �

APPENDIX B
TIME-VARYING DIGRAPHS

Proof of Theorem 7. Denote Π = I −11>/n the projection
matrix onto span(1)⊥. Then x(t) can be split as x(t) =
Πx(t) + (I − Π)x(t) = δ(t) + α1, where α(t) = 1

n1
>x(t)

is the norm of the projection of x(t) onto span(1), and
δ(t) = x(t) − α(t)1 is the projection onto span(1)⊥. Here
we omit the argument t for simplicity of expression. By (4),

α̇ =
1

n
1>ẋ = − 1

n
1>Lσ(t)x = 0. (15)

The third equality is due to the weight balance of each Lk, k ∈
[m] (which follows from normality of Lk). Therefore, α(t) is
invariant, i.e., α(t) = α(0) = 1

n1
>x(0), t ≥ 0.

As for the “disagreement” projection δ, it holds

δ̇ = ẋ = −Lσ(t)x = −Lσ(t)δ. (16)

Define a candidate Lyapunov function V = 1
2‖δ‖

2 ≥ 0. We
have

V̇ = −δ>
Lσ(t) + L>σ(t)

2
δ. (17)

By Corollary 1, for all k ∈ [m], Lk+L
>
k

2 is psd of corank 1,
and 1 is its eigenvector corresponding to the eigenvalue 0. Let

λ∗ = min
k∈[m]

λ2(
Lk + L>k

2
) > 0.

λ∗ is real due to the symmetry of Lk+L
>
k

2 . By the Courant-
Fisher theorem [38], it holds

V̇

‖δ‖2
≤ − min

v>1=0
‖v‖=1

v>
Lσ(t) + L>σ(t)

2
v = −λ∗,

i.e., V̇ ≤ −λ∗V . This means that V decreases to 0 exponen-
tially at the rate λ∗. Therefore, for any switching signal σ(t),
limt→∞ δ(t) = 0, i.e., limt→∞ x(t) = α(0)1. The proof is
then completed. �

Proof of Theorem 8. The normality of Wk implies that
W>k 1 = 1. Similarly to the proof of Theorem 7, let α(t) =
1
n1
>x(t), t ∈ Z≥. It then holds

α(t+ 1) =
1

n
1>x(t+ 1) =

1

n
1>Wσ(t)x(t) = α(t).

Let δ(t) = x(t)− α(t)1. We then have

δ(t+ 1) = Wσ(t)x(t)− α(t+ 1)1 = Wσ(t)δ(t).

Take a candidate Lyapunov function V (t) = δ(t)>δ(t). It
holds

V (t+ 1)− V (t) = −δ(t)>(In −W>σ(t)Wσ(t))δ(t). (18)

For k ∈ [m], since Wk is normal, it can be decomposed as
Wk = UDkU

>, where Dk is as in (14):

Dk =



µk
1

. . .
µk
`

νk`+1 ωk
`+1

−ωk
`+1 νk`+1

. . .
νkn−`

2

ωk
n−`
2

−ωk
n−`
2

νkn−`
2


Here,

Λ(Wk) = {µk1 = 1, µk2 , . . . , µ
k
` ,

νk`+1 ± iωk`+1, . . . , ν
k
n−`
2

± iωkn−`
2

}

with all the µk, νk and ωk real, and U an orthonormal matrix.
Therefore, W>k Wk = U(Dk)>DkU

>, with

(Dk)>Dk =



1
(µk

2)
2

. . .
(µk

` )
2

ηk`+1I2
. . .

ηkn−`
2

I2


with ηkj = (νkj )2 +(ωkj )2, j = `+1, . . . , n−`2 . By Corollary 3,

|µkj | < 1, j = 2, . . . , `
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and

|(νkj )2 + (ωkj )2| < 1, j = `+ 1, . . . ,
n− `

2
.

Then, applying the Courant-Fisher theorem to (18),

V (t+ 1)− V (t) ≤ −λ̃V (t),

where λ̃ = maxk∈[m] |λn−1(Wk)| < 1. Therefore,

V (t) ≤ (1− λ̃)tV (0),

which yields limt→∞ δ(t) = 0. The proof is then completed.
�

Proof of Theorem 9. From the properties of Q,

U =

[
Q

1>/
√
n

]
is an orthonormal change of basis, and

ULkU
> =

[
L̄k 0
0> 0

]
, (19)

where L̄k = QLkQ
> is the projection of Lk onto span(1)⊥.

Since −Lk is EEP, it follows from Corollary 1 that it is
marginally stable and that its zero eigenvalue has multiplicity
1, while from (19) it follows that Lk and L̄k share all nonzero
eigenvalues. Consequently, −L̄k is Hurwitz. Considering the
projection of P on span(1)⊥, P̄ = QPQ>, then it is
P̄ = P̄> � 0 and

−L̄kP̄ − P̄ L̄>k = −QLkPQ> −QPL>k Q>,

where we have used that by construction Q>Q = Π = I −
11>/n, and that LkΠ = Lk. Existence of a CLF for the
projections, i.e., of P̄ = P̄> � 0 such that −L̄kP̄ − P̄ L̄>k ≺ 0
∀ i, implies that (7) holds, hence, analogously to the proof
of Theorem 7, that consensus is achieved for any switching
signal σ(t). �

Proof of Theorem 10. From Corollary 3, the projection of
Wk onto span(1)⊥, W̄k = QWkQ

> is Schur stable. Denoting
with P̄ = QPQ> the projection of P on span(1)⊥, then
P � 0 implies P̄ � 0 and

W̄>k P̄ W̄k − P̄ = Q(W>k PWk − P )Q> ≺ 0, k = 1, . . . ,m

implies (8). The equality above follows from Π = Q>Q =
I − 11>/n, WkΠ = Wk − 11>/n and Q1 = 0. �

Proof of Proposition 2. Property 1 is true by construction.
Property 2 follows from the fact that, since S2 = I , the
system (10) corresponds to a change of basis w.r.t. to (2),
and consequently Property 3 follows from Lemma 4. �
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