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Abstract. Even for nonnegative graphs, the pseudoinverse of a Laplacian matrix is not an
“ordinary” (i.e., unsigned) Laplacian matrix, but rather a signed Laplacian. In this paper, we
show that the property of eventual positivity provides a natural embedding class for both signed and
unsigned Laplacians, class which is closed with respect to pseudoinversion as well as to stability. Such
class can deal with both undirected and directed graphs. In particular, for digraphs, when dealing
with pseudoinverse-related quantities such as effective resistance, two possible solutions naturally
emerge, differing in the order in which the operations of pseudoinversion and of symmetrization are
performed. Both lead to an effective resistance which is a Euclidean metric on the graph.
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1. Introduction. The Laplacian matrix is a fundamental object used ubiqui-
tously in many fields, such as graph theory, linear algebra, complex networks, dy-
namical systems and PDEs. It captures basic information on a graph, such as its
connectivity and spectrum [12, 1] but also properties of a dynamical system living on
the graph [30, 4, 7, 32]. Associated to the Laplacian is also a Laplacian pseudoin-
verse, typically a Moore-Penrose pseudoinverse, which has also been used extensively
to describe graph-related quantities. For instance it is used to build an effective re-
sistance matrix for the graph, a distance measure that exploits the analogy between
graphs and electrical networks [24, 38, 20, 35, 15], and to compute hitting/commuting
times in Markov chains [8, 31, 6, 37, 25]. It is also used to estimate the H2 norm in
networked dynamical systems [39, 40, 26].

In this paper, we are interested in studying the properties of the Laplacian pseu-
doinverse, starting from the observation that even in the most common case (when
the graph is undirected and has all nonnegative edges weights), the Laplacian pseu-
doinverse is not a Laplacian matrix. In fact, if we consider a connected graph with
nonnegative edge weights, it is well-known that the Laplacian L is an M-matrix (i.e.,
a matrix with nonpositive off-diagonal entries, such that −L is marginally stable, see
below for proper definitions). It is also easy to show that the Laplacian pseudoinverse
does not belong to the same class of matrices. Consider for instance the following
example

(1.1) L =

 0.8 −0.7 −0.1
−0.7 0.9 −0.2
−0.1 −0.2 0.3

 .
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Its pseudoinverse is

(1.2) L† =

 0.773 0.048 −0.821
0.048 0.628 −0.676
−0.821 −0.676 1.498


which has an anomalous sign in the (1,2) entry. Even though L† is not an M-matrix,
it nevertheless has most of the properties of an M-matrix, most notably a Perron-
Frobenius property from which it follows that, just like it is for −L, the eigenpair
formed by the 0 eigenvalue and the positive “all 1” eigenvector 1 is the dominant
pair for −L†. In the linear algebra literature, such matrices are called Eventually
Exponentially Positive (EEP) [28, 29, 23, 4].

It is easily shown through examples that similar arguments are valid if we extend
our analysis to Laplacians associated to signed graphs. A signed graph is a graph
whose edges can have both positive or negative weights [42]. Motivation for using
signed graphs instead of “ordinary” (i.e., nonnegative weight) graphs comes e.g. from
multiagent systems in which cooperative and antagonistic interactions coexist [2],
small-disturbance angle stability analysis of microgrids [34], Jacobian linearization of
Kuramoto oscillators beyond the phase cohesive set [14]. See also [16, 21] for other
contexts of relevance. Of the two possible signed Laplacians that can be associated to
a signed graph, in this paper we consider the so-called “repelling signed Laplacian”
([33], see next Section for a precise definition), whose main property is that it always
has 0 as eigenvalue but it may or may not be stable. In [3] it is shown that the EEP
property can be used to characterize stability of these signed Laplacians.

What is shown in this paper, instead, is that the pseudoinverse of an EEP signed
Laplacian is an EEP signed Laplacian. In other words, unlike the class of “ordinary”
Laplacians, the class of EEP signed Laplacians is closed with respect to pseudoin-
version. In addition, for Laplacians that are also weight balanced (i.e., for which 1

is both the left and right dominant eigenvector) the class of EEP signed Laplacians
is closed also with respect to stability. When we restrict further the class of signed
Laplacians from weight balanced L to normal L, then we have that this class is also
closed w.r.t. symmetrization, that is, the operation of taking the symmetric part.
In particular the ensuing signed Laplacians and Laplacian pseudoinverses are both
characterized by the fact of having a symmetric part which is positive semidefinite of
corank 1. Such property is particularly useful in contexts such as the computation of
effective resistance, which, being a distance, has to be symmetric.

It is also shown in the paper that the operations of symmetrization and of pseu-
doinversion do not commute: depending on the order in which they are applied one
gets a different result. Of the two possibilities, one (symmetrization followed by
pseudoinversion) is shown to be equivalent to the notion used in [41]; the other (pseu-
doinversion followed by symmetrization) is instead new and presented here for the
first time. A shortcoming of the definition of [41] is that the “directedness” nature
of a digraph is already lost before the pseudoinverse is computed, meaning that in-
trinsically non-symmetric quantities (like for instance computing hitting times in a
Markov chain) become impossible to attain, while they are feasible with our new defi-
nition. When instead the pseudoinverse is used for computing intrinsically symmetric
quantities like a graph distance, then both definitions are viable.

The rest of the paper is organized as follows: in Section 2 we introduce notation
and preliminary material, while in Section 3 we review results on signed Laplacians
from [3, 19]. In Section 4 we present the main results for the Laplacian pseudoin-
verse of signed graphs. Their application to the calculation of effective resistance is
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discussed in Section 5, while an outlook on other potential applications is provided in
Section 6. Most of the proofs are put in the Appendices at the end of the paper.

A preliminary version of this work appears in the conference proceedings of CDC
2021 [18]. Apart from the proofs of the various results, which were missing in [18],
also the material of Sections 5 and 6 is largely novel.

2. Preliminaries.

2.1. Linear algebraic preliminaries. Given a matrix A = [aij ] ∈ Rn×n, the
(i, j)-th entry of A is denoted Aij or [A]ij . A ≥ 0 means element-wise nonnegative, i.e.,
aij ≥ 0 for all i, j = 1, . . . , n, while A > 0 means element-wise positive, i.e., aij > 0
for all i, j = 1, . . . , n. The spectrum of A is denoted sp(A) = {λ1(A), . . . , λn(A)},
where λi(A), i = 1, . . . , n, are the eigenvalues of A. In this paper we use the ordering
Re[λ1(A)] ≤ Re[λ2(A)] ≤ · · · ≤ Re[λn(A)], where Re[λi(A)] indicates the real part of
λi(A). The spectral radius of A is the smallest real nonnegative number such that
ρ(A) ≥ |λi(A)| for all i = 1, . . . , n and λi(A) ∈ sp(A). A matrix A is called Hurwitz
stable if Re[λn(A)] < 0, and marginally stable if Re[λn(A)] = 0 and any eigenvalue
λ(A) ∈ sp(A) with Re[λ(A)] = 0 is a simple root of the minimal polynomial of A. A

matrix A is called positive semidefinite (psd) if xTAx = xT A+AT

2 x ≥ 0 ∀x ∈ Rn and it

is called positive definite (pd) if xTAx = xT A+AT

2 x > 0 ∀x ∈ Rn \ {0}. A matrix A is
called irreducible if there does not exist a permutation matrix P s.t. PTAP is block

triangular, that is PTAP 6=
[
A11 A12

0 A22

]
where A11 and A22 are nontrivial square

matrices. A matrix B is called a Z-matrix if it can be written as B = sI − A, where
A ≥ 0 and s > 0, and it is called an M-matrix if, in addition, s ≥ ρ(A), which implies
that all the eigenvalues of B have nonnegative real part. If s > ρ(A) then B is a
nonsingular M-matrix and −B is Hurwitz stable. If s = ρ(A) then B is a singular M-
matrix, and if A is irreducible then −B is marginally stable. If A is a singular matrix,
the Moore-Penrose pseudoinverse of A, denoted A†, is the unique n × n matrix that
satisfies AA†A = A, A†AA† = A†, (A†A)T = A†A, and (AA†)T = AA†. A singular
matrix A is said to have index 1 if the range of A, R(A), and the kernel of A, N (A),
are complementary subspaces, i.e., R(A) ∩N (A) = 0. For index 1 singular matrices,
other types of inverses, like the Drazin inverse and the group inverse [27], coincide. A
singular M-matrix has always index 1, see [27].

A matrix A ∈ Rn×n is said to have corank d if the dimension of the kernel space
of A, N (A), is d. A matrix is normal if it commutes with its transpose: AAT = ATA.
A matrix A is said a range symmetric matrix ([27], also called “equal projector”) if
N (A) = N (AT ) (and hence R(A) = R(AT )). Range symmetric matrices generalize
normal matrices, and like normal matrices have many equivalent characterizations,
see [27]. For instance a range symmetric matrix A is such that A commutes with
its Moore-Penrose pseudoinverse A†. If A is a range symmetric matrix, then ∃U

orthogonal such thatA = U

[
0 0
0 B

]
UT withB nonsingular of dimension r = rank(A).

Singular range symmetric matrices have index 1, and for them the Moore-Penrose
pseudoinverse, the Drazin inverse and the group inverse coincide.

2.2. Signed graphs. Let G(A) = (V, E , A) be the (weighted) digraph with ver-
tex set V (card(V) = n), E = V × V, and adjacency matrix A = [aij ] ∈ Rn×n:
aij ∈ R \ {0} iff (j, i) ∈ E , where (j, i) represents a directed edge from node j to
node i. A signed digraph G(A) is a digraph where each edge is labeled by a sign (i.e.,
sign (aij) = ±1). To distinguish with the signed digraph case, the digraph G(A) is



4 A. FONTAN, AND C. ALTAFINI

also called nonnegative or unsigned if A ≥ 0. A node i is said to be linked to j if
there exists an edge sequence (j, i1), (i1, i2), . . . , (is−1, is), (is, i) that is picked from E .
We call G(A) strongly connected if each pair of nodes in V is linked to each other.
For digraphs G(A) which are strongly connected and without self-loops, the matrix
A is irreducible with null-diagonal. A digraph G(A) contains a rooted spanning tree
if there exists a node (called root) such that any other node of the digraph is linked
to it. The weighted in-degree and out-degree of node i are denoted σin

i =
∑n
j=1 aij

and σout
i =

∑n
j=1 aji, respectively. A digraph G(A) is weight balanced if in-degree

and out-degree coincide for each node, i.e., σin
i =

∑n
j=1 aij =

∑n
j=1 aji = σout

i for all
i = 1, . . . , n. The signed Laplacian of a graph G(A) is the (in general non-symmetric)
matrix L = [Lij ] ∈ Rn×n, defined as

(2.1) [L]ij =

{
−aij , j 6= i∑n
j=1 aij = σin

i , j = i

Eq. (2.1) can be written in compact form as L = Σ−A, where Σ = diag
(
σin

1 , . . . , σ
in
n

)
.

This definition of signed Laplacian corresponds to the so-called “repelling signed
Laplacian” in the terminology of [33], terminology which allows to distinguish it
from another signed Laplacian (referred to in [33] as “opposing signed Laplacian”),

obtained replacing σin
i with σin,abs

i =
∑n
j=1 |aij |, see [33, 2]. If the graph G(A) is

unsigned (i.e., A ≥ 0), this definition equals the standard Laplacian matrix. While
with a slight abuse of notation we use the letter L to indicate both a Laplacian and
a signed Laplacian, we refer to a Laplacian (of an unsigned graph) as an unsigned
Laplacian in this paper. By construction, the signed Laplacian L is a singular ma-
trix with span(1) ∈ N (L), where 1 ∈ Rn is the vector of 1s; L is weight balanced if
LT1 = L1 = 0, i.e., if span(1) ∈ N (LT ).

2.3. Kron reduction for undirected networks. Consider an undirected and
connected graph G(A) = (V, E , A) with adjacency matrix A = [aij ] ∈ Rn×n. Let
α ⊂ {1, . . . , n} (with card(α) ≥ 2) and β = {1, . . . , n}\α be a partition of the node set
V = {1, . . . , n}. After an adequate permutation of its rows and columns, the Laplacian

L of the graph G(A) can be rewritten as L =

[
L[α] L[α, β]
L[β, α] L[β]

]
, where we denote

L[α, β] the submatrix of L determined by the index sets α and β, and L[α] := L[α, α]
the principal submatrix of L determined by the index set α. If L[β] is nonsingular,
the Schur complement of L[β] in L is given by L/L[β] := L[α]−L[α, β]L[β]−1L[β, α].

In the context of electrical networks, where α and β are referred to as boundary
(or terminal) and interior nodes, this procedure is denoted Kron reduction (see e.g.
[13, 15, 35]) and it yields a matrix Lr := L/L[β], denoted Kron-reduced matrix, which
is still a Laplacian of an undirected graph Gr (see [13] for details and properties of Lr
in the case of unsigned networks). If G(A) is signed and undirected, Lr is a signed
symmetric Laplacian matrix and, when α is chosen as the set of nodes incident to
edges with negative weight, it is shown in [10] that L[β] is positive definite and that
L is psd of corank 1 if and only if Lr is psd of corank 1.

2.4. Eventual exponential positivity.

Definition 2.1. A matrix A ∈ Rn×n has the Perron-Frobenius property1 if ρ(A)

1In the literature, there are two versions of the “Perron-Frobenius property”, a strong one,
corresponding to χ > 0, and a weak one, corresponding to χ ≥ 0. In this paper we always consider
the strong version.
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is a simple positive eigenvalue of A s.t. ρ(A) > |λ(A)| for every λ(A) ∈ sp(A),
λ(A) 6= ρ(A), and χ, the right eigenvector relative to ρ(A), is positive.

The set of matrices which possess the Perron-Frobenius property will be denoted PF ,
and it is known (see e.g. [22, Thms 8.2.8 and 8.4.4]) that positive matrices, as well as
nonnegative and primitive matrices (i.e., matrices that are irreducible and have only
one nonzero eigenvalue of maximum modulus), are part of this set. However, it has
been shown (see [28]) that matrices having negative elements can also possess this
property, provided that they are eventually positive.

Definition 2.2. A matrix A ∈ Rn×n is called eventually positive (denoted A
∨
> 0)

if ∃ k0 ∈ N s.t. Ak > 0 for all k ≥ k0.

Theorem 2.3. [28, Thm 2.2] Let A ∈ Rn×n. The following are equivalent:
1. Both A,AT ∈ PF ;

2. A
∨
> 0;

3. AT
∨
> 0.

Definition 2.4. A matrix A ∈ Rn×n is called eventually exponentially positive
(EEP) if ∃ t0 ∈ N s.t. eAt > 0 for all t ≥ t0.

Lemma 2.5. [29, Thm 3.3] A matrix A ∈ Rn×n is EEP if and only if ∃ d ≥ 0 s.t.

A+ dI
∨
> 0.

3. Properties of signed Laplacian matrices. The aim of this section is to
summarize important properties of Laplacian matrices which will be useful in the
following. Most of these results are from our previous works [3, 18, 19], hence they
are reported here without proofs. First, Section 3.1 treats the unsigned Laplacians
case; then, Section 3.2 considers the signed Laplacians case.

3.1. Unsigned graphs case. When G(A) is a strongly connected unsigned di-
graph, it is well-known that its Laplacian L is a singular M-matrix, it is diagonally
dominant, and it is marginally stable of corank 1. Its symmetric part in general need
not be psd, but it is Lyapunov diagonally semistable, i.e., there exists a (unique) pos-
itive diagonal matrix Ξ = diag (ξ) (ξ > 0) s.t. ΞL+ LTΞ is psd. In particular, if L is
weight balanced then its symmetric part is psd of corank 1.

Theorem 3.1 (Thm 2 and Coroll. 1 in [3]). Let G(A) be an unsigned strongly
connected digraph with Laplacian L. Then, the following hold:

1. Let 1 and ξ > 0 be the right and left eigenvectors of L relative to the eigenvalue
0. Then ξ is the unique (up to a scalar multiplication) positive vector for
which the diagonal matrix Ξ = diag (ξ) is s.t. ΞL + LTΞ is psd. For it,
N (LTΞ) = N (L) = span(1) and hence ΞL+ LTΞ is of corank 1;

2. −L is marginally stable of corank 1.

3. Assume that L is weight balanced. Then, Ls = L+LT

2 is psd of corank 1.

3.2. Signed graphs case. Signed and unsigned Laplacians share some proper-
ties, such as having an eigenvalue in 0, but differ in others in subtle ways. For instance,
while the Laplacian of an unsigned strongly connected digraph is always marginally
stable, the same is not true in the signed case. Moreover, while it is well-known
that in the unsigned case an irreducible Laplacian has a simple zero eigenvalue (i.e.,
corank(L) = 1), this is not true in the signed case (see counterexamples in [18, 32]).

The following proposition summarizes these and other relevant observations.

Proposition 3.2. Let G(A) be a signed digraph with signed Laplacian L. Then:
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(i) 0 ∈ sp(L) of right eigenvector 1;
(ii) −L need not be marginally stable;

(iii) Re[λ(L)] ≥ 0 for all λ(L) ∈ sp(L) need not hold;
(iv) L need not be diagonally dominant;
(v) L irreducible (i.e., G(A) strongly connected) need not imply L of corank 1.

Concerning the converse of the last property, in both the signed and unsigned
cases, corank(L) = 1 implies that L has a rooted spanning tree. If in addition L is also
weight balanced, then L is irreducible. Another sufficient condition for irreducibility
is given by the EEP property.

Lemma 3.3 (Lemma 5 in [19]). Let G(A) be a signed digraph with signed Lapla-
cian L.

1. If L is of corank 1, then G(A) has a rooted spanning tree.
2. If −L is EEP or if L is weight balanced and of corank 1, then L is irreducible

(and G(A) is strongly connected).

In previous works, see [3, 19], we have investigated how to extend the results of
Theorem 3.1 to the signed graph case. The main findings are summarized in Sec-
tion 3.2.1 and Section 3.2.2 for the undirected and directed graphs case, respectively.

3.2.1. Signed undirected graphs case. The following theorem highlights the
key role of the EEP property.

Theorem 3.4 (Thm. 3 in [3]). Let G(A) be a signed undirected graph with signed
Laplacian L. Then, the following conditions are equivalent:

(i) −L is EEP;
(ii) −L is marginally stable of corank 1;

(iii) L is psd of corank 1.

Remark 3.5. As per Lemma 3.3, it is redundant in Theorem 3.4 (and in the fol-
lowing theorems) to add the assumption that the signed graph G(A) must be strongly
connected.

3.2.2. Signed directed graphs case. When the signed graph G(A) is directed,
the conditions of Theorem 3.4 are no longer equivalent: EEP of the signed Laplacian
is a sufficient but not necessary condition for its marginal stability. Moreover, even
if −L is EEP (or marginally stable of corank 1) its symmetric part may not be psd.
Theorem 3.6 extends the results of Theorem 3.4 to signed directed graphs, and shows
that for digraphs that are weight balanced, EEP and marginal stability (of corank 1)
of the signed Laplacian are equivalent properties. Additionally, by further restring to
digraphs whose Laplacian is a normal matrix, stability of the symmetric part of the
Laplacian can be guaranteed.

Theorem 3.6 (Thm. 4, Cor. 1, and Cor. 2 in [19]). Let G(A) be a signed directed
graph with signed Laplacian L. Consider the following conditions:

(i) −L is EEP;
(ii) −L is marginally stable of corank 1;

(iii) Ls = L+LT

2 is psd of corank 1.
1. If L satisfies (i), then L satisfies (ii). Viceversa, if L satisfies (ii), then there

exists a scalar d ≥ 0 such that dI − L ∈ PF .
2. If L is s.t. Ls satisfies (iii), then L satisfies (i) and (ii), but not viceversa.
3. If L is weight balanced, then the conditions (i) and (ii) are equivalent, and

both are implied by (iii), but not viceversa.



PSEUDOINVERSES OF SIGNED LAPLACIAN MATRICES 7

4. If L is normal, then (i), (ii), and (iii) are equivalent.

Condition (iii) of Theorem 3.6 corresponds obviously to −Ls EEP, see Theorem 3.4.

4. Pseudoinverse of signed Laplacians. This section contains the main re-
sults of the paper. Consider a signed digraph G(A) with signed Laplacian L. We start
by listing a few useful properties of L and L†. Assume that L is weight balanced of
corank 1. Then L is a range symmetric matrix with N (L) = N (LT ) = span(1). Let

Π = I−J , where J = 11T

n , denote the projection of Rn ontoR(L) = R(LT ) = 1⊥, i.e.,
the subspace of Rn orthogonal to 1. A few properties of L follow straightforwardly.

Lemma 4.1. The matrix J = 11T

n has the following properties:

1. J = limt→∞ e−Lt = limt→∞ e−L
T t;

2. Jk = J ∀k ∈ N which implies that (I − J)k = (I − J) ∀k ∈ N;
3. JL = LJ = 0 which implies that e−(L+J) = e−Le−J and Je−L = e−LJ = J ;
4. e−Jt = I − J + Je−t which implies that Je−Jt = e−JtJ = Je−t.

The Laplacian pseudoinverse L† of L satisfies the following properties.

Lemma 4.2. If L is weight balanced and of corank 1, then L† is weight balanced
and of corank 1. For it

LL† = L†L = Π(4.1a)

L†1 = (L†)T1 = 0(4.1b)

L†Π = ΠL† = L†(4.1c)

L† = (L+ γJ)−1 − 1

γ
J ∀γ 6= 0.(4.1d)

Furthermore, if L is normal then L† is normal.

Proof in Appendix A.

Remark 4.3. Lemmas 4.1 and 4.2 hold also for any unsigned Laplacian matrix L.

In the next two sections, Sections 4.1 and 4.2, our main results on the pseudoinverses of
Laplacian matrices are presented, in the unsigned and signed graph case, respectively.

4.1. Unsigned graphs case. The class of unsigned Laplacians is not closed
with respect to pseudoinversion. In fact, as e.g. (1.1)-(1.2) show, the pseudoinverse
of an unsigned L is in general a signed Laplacian. The following theorem states this
fact, and shows that all other properties of relevance for a Laplacian (Theorem 3.1)
are nevertheless respected. It also shows that for non-symmetric L there is more than
one way to define the symmetric part for the pseudoinverse.

Theorem 4.4. Let G(A) be an unsigned strongly connected digraph with Lapla-
cian L, and assume that L is weight balanced. Let L† be the (weight balanced) pseu-
doinverse of L. Then:

(i) −L† is EEP;
(ii) −L† is marginally stable of corank 1;

(iii) (L†)s = L†+(L†)T

2 is psd of corank 1;

(iv) (Ls)
† =

(
L+LT

2

)†
is psd of corank 1.

Proof in Appendix B.

Example 4.5. The pseudoinverse of the unsigned (symmetric) Laplacian matrix
(1.1) is given in (1.2). Since the element in position (1,2) is positive, L† is not a
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Z-matrix and hence it is not an unsigned Laplacian matrix, but it is rather a signed
Laplacian matrix. Moreover, sp(L†) = {0, 0.64, 2.26}, that is, −L† is marginally
stable. Combined with property (4.1b) in Lemma 4.2, L† is also EEP.

Remark 4.6. For digraphs, in general (Ls)
† 6= (L†)s, meaning that the operations

of taking the symmetric part and of taking the pseudoinverse do not commute, i.e.,
the following diagram does not commute

(4.2)

L L†

Ls (Ls)
† 6= (L†)s

pseudoinv.

symm. symm.

pseudoinv.

See Example 4.7 for a counterexample.

Example 4.7. Consider the following unsigned weight balanced Laplacian matrix
L, whose (weight balanced) pseudoinverse is given by L†:

L =


0.49 −0.49 0 0
−0.15 0.59 −0.07 −0.37

0 0 0.49 −0.49
−0.34 −0.1 −0.42 0.86

 , L† =


1.24 0.49 −1.02 −0.66
−0.31 0.99 −0.5 −0.15
−0.72 −1 1.51 0.14
−0.21 −0.48 0.01 0.67

 .
It is sp(L) = {0, 0.42, 0.98, 1.03}, sp(Ls) = {0, 0.34, 0.86, 1.22}, sp((Ls)

†) = {0, 0.82,
1.16, 2.90}, sp(L†) = {0, 0.97, 1.02, 2.40}, and sp((L†)s) = {0, 0.77, 1.02, 2.59}, that is,
−L,−L† are marginally stable of corank 1 and Ls, (Ls)

†, (L†)s are psd of corank 1.

4.2. Signed graphs case. As shown in Theorems 3.4 and 3.6, the conditions
−L EEP and −L marginally stable of corank 1 are equivalent, meaning that the class
of weight balanced signed Laplacian matrices which are EEP is closed with respect to
stability. Our main aim in this Section is to show that this class is closed also with
respect to pseudoinversion.

4.2.1. Signed undirected graphs case. For the class of symmetric Laplacian
matrices which are EEP, Theorem 4.8 extends the results of Theorem 3.4 and shows
closure with respect to pseudoinversion. Furthermore, Theorem 4.9 shows that this
class is closed also under Kron reduction, meaning that the Kron reduced matrix of
an EEP signed Laplacian is also a signed Laplacian which is EEP.

Theorem 4.8. Let G(A) be a signed undirected graph with signed Laplacian L.
Let L† be the pseudoinverse of L. Then, the following conditions are equivalent:

(i) −L is EEP;
(ii) L† is psd of corank 1;

(iii) −L† is EEP.

Proof in Appendix C.

Theorem 4.9. Let G(A) be a signed undirected graph with signed Laplacian L.
Let α (with card(α) ∈ [2, n− 1]) and β = {1, . . . , n} \ α be a partition of the node set
V. Let Gr be the signed undirected graph obtained by applying the Kron reduction on
G, and let Lr = L/L[β] be its Laplacian. Consider the following conditions:

(i) −L is EEP;
(ii) Lr is psd of corank 1;

(iii) −Lr is EEP.
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If L satisfies (i), then Lr satisfies (ii) and (iii).
Furthermore, if G(A) is connected, α is the set of nodes incident to negatively

weighted edges, and β = {1, . . . , n}\α, then the conditions (i), (ii), (iii) are equivalent.

Proof in Appendix C.
Note that if the set α of Theorem 4.9 does not correspond to the set of nodes

incident to negatively weighted edges then, even if Lr is psd of corank 1 and L is
irreducible, −L need not be EEP.

The results of this section can be summarized in the following corollary.

Corollary 4.10. The class of EEP symmetric Laplacian matrices is closed un-
der the pseudoinverse operation, under the operation of Kron reduction, and with
respect to stability.

We conclude this section by observing that the class of EEP symmetric Laplacian ma-
trices described in Corollary 4.10 is also closed with respect to (positive) summation.

Lemma 4.11. Consider two undirected signed graphs G(Ai) with signed Laplacian
Li, i = 1, 2. If −Li, i = 1, 2, is EEP, then the matrix L = k1L1 + k2L2, where k1, k2

are positive scalars, is itself a signed Laplacian and −L is EEP.

Proof in Appendix C.

4.2.2. Signed directed graphs case. The results of Theorem 3.6 hold also for
the Laplacian pseudoinverse, as shown in Theorem 4.12, which extends the results of
Theorems 4.4 and 4.8 to signed directed graphs.

Theorem 4.12. Let G(A) be a signed directed graph with signed Laplacian L, and
assume that L is weight balanced. Let L† be pseudoinverse of L. Then, the following
conditions are equivalent:

(i) −L is EEP;
(ii) −L† is marginally stable of corank 1;

(iii) −L† is EEP.
Furthermore, consider the following statements:

(iv) (L†)s = L†+(L†)T

2 is psd of corank 1;

(v) (Ls)
† =

(
L+LT

2

)†
is psd of corank 1.

If L is normal, then (i)÷(v) are equivalent.

Proof in Appendix D.

Remark 4.13. Even in the case of a normal Laplacian L, the operations of pseu-
doinverse and of symmetrization do not commute, i.e., (L†)s 6= (Ls)

†. Proof in
Appendix D.

In [41] the authors introduce a new notion of “generalized inverse” of the Laplacian
matrix for unsigned digraphs. They observe that, since the Laplacian L of an unsigned
graph is marginally stable of corank 1, then its projection on 1⊥, denoted L̄ = QLQT

where the rows of Q ∈ Rn−1×n form an orthonormal basis for 1⊥, is Hurwitz stable.
Therefore, there exists a unique pd matrix S which solves the Lyapunov equation
L̄S+SL̄T = In−1. They proceed to define the “generalized inverse” as X = 2QTSQ,
which has the property of being a positive semidefinite matrix. The reasoning of [41]
is valid also for signed digraphs, provided that L is normal. In particular, in the next
lemma we show that, if L is normal and −L is EEP, X is equivalent to (Ls)

†.
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Lemma 4.14. Let G(A) be a signed digraph with Laplacian L, and assume that L
is normal and −L is EEP. Then, (Ls)

† = X, where

(4.3) X = 2QTSQ, L̄S + SL̄T = In−1, L̄ = QLQT .

Proof in Appendix D.
The results of this section can be summarized in the following corollary.

Corollary 4.15. The class of EEP weight balanced Laplacian matrices is closed
under the pseudoinversion operation, and with respect to stability.

The class of EEP normal Laplacian matrices is closed under any combination of
pseudoinverse and symmetrization.

Finally, notice that the class of EEP weight balanced Laplacian matrices is not a
cone and, for instance, Lemma 4.11 does not hold in the directed case. However, it is
possible to show that this class is star-shaped, meaning that it is path-connected [23]
(see also [5, Def. 5.4] for a definition of star-shaped set).

Lemma 4.16. The class of EEP weight balanced Laplacian matrices is star-shaped

with respect to the star center Π = I − 11T

n , i.e., Lα := αL+ (1− α)Π, α ∈ [0, 1], is
a weight balanced signed Laplacian, and its negation −Lα is EEP.

Proof in Appendix D.

4.3. Properties of signed Laplacians and their pseudoinverses: a sum-
mary. This section summarizes the inclusion properties of the classes of signed
Laplacian matrices considered in this work. Let L be a signed Laplacian and L† its
pseudoinverse. It holds that:

(4.4) C1 ⊃ C2 ⊃ C3 ⊃ C4 ⊃ C5
where C1 = {L: −L is marginally stable (of corank 1)}, C2 = {L: −L is EEP}, C3 =
{L: −L is EEP, L1 = LT1}, C4 = {L: −Ls is EEP}, and C5 = {L: −L is EEP, L is
normal}. From Corollaries 4.10 and 4.15, we have:

• the sets C3, C4, C5 are closed w.r.t. pseudoinversion and marginal stability;
• the set C5 is closed under any combination of pseudoinversion and symmetriza-

tion.
Consequently we could also have written: C3 = {L†: −L† is EEP, L†1 = (L†)T1},
C4 =

{
L†: −(L†)s is EEP

}
, and C5 = {L†: −L† is EEP, L† is normal}.

Using counterexamples, we can show that the inequalities in (4.4) are strict.

Example 4.17. In this example we show that the inequalities in (4.4) are strict.
• C2 ( C1. Consider the following signed Laplacian matrix

L =


−0.4 0.7 0 −0.3
−1.4 1.6 0.2 −0.4
−0.7 0 2.8 −2.1

0 0 −1.3 1.3

 .
It is sp(L) = {0, 0.73 ± 0.12i, 3.83}, i.e., −L marginally stable, but the left
eigenvector associated to 0, [0.78 − 0.34 0.24 0.46]T , is not positive, i.e., −L
is not EEP.

• C3 ( C2. Consider the following signed Laplacian matrix

L =


0.73 0 −0.73 0

0 1.02 −0.4 −0.62
0 −0.07 0.7 −0.63

−0.63 0.05 0 0.57

 .
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It is sp(L) = {0, 0.97 ± 0.58i, 1.08}, i.e., −L marginally stable, and the left
eigenvector associated to 0, [0.54 0.01 0.57 0.63]T , is positive, i.e., −L is

EEP: for d > 0.6572, B = dI − L
∨
> 0. However, L1 6= LT1, i.e., L is not

weight balanced.
• C4 ( C3. Consider the following signed Laplacian matrix

L =


0.15 0 0 −0.15
−0.23 0.15 0.15 −0.07
0.01 −0.12 −0.03 0.14
0.07 −0.03 −0.12 0.08

 .
It is sp(L) = {0, 0.0901±0.199i, 0.169}, i.e., −L is marginally stable of corank

1. Moreover, L1 = LT1 = 0 and, for d > 0.2647, B = dI − L
∨
> 0. However,

sp(Ls) = {−0.0402, 0, 0.1248, 0.2655}, i.e., Ls is not psd.
• C5 ( C4. Consider the following signed Laplacian matrix

L =


1 1 −1 −1
−1 1 0 0
−1 −1 2 0
1 −1 −1 1

 .
It is sp(L) = {0, 1.5 ± 1.323i, 2}, i.e., −L is marginally stable of corank 1,
and sp(Ls) = {0, 0.7192, 1.5, 2.7808}, i.e., Ls is psd of corank 1. Moreover,
L1 = LT1 = 0, but LLT 6= LTL, that is, L is not normal.

5. Application to effective resistance. A resistive electrical network can be
represented as a graph G(A) = (V, E , A) where each weight aij represents the inverse
of the resistance between the nodes i and j (i.e., the conductance of the transmission):
aij = 1

rij
, see [24, 20], and [15] for an overview. The notion of effective resistance

between a pair of nodes (see e.g. [15]) is related to the pseudoinverse of the Laplacian
associated to the electrical network. When the network is connected, undirected and
nonnegative, its Laplacian (and its pseudoinverse) is known to be psd of corank 1,
which means that the effective resistance between two nodes is well-defined (see e.g.
[20] for its properties). Extensions to signed graphs and negative resistances have been
investigated in [43, 11, 44, 9, 10], where positive semidefiniteness of the Laplacian is
expressed in terms of effective resistance.

In what follows we make use of both (L†)s and (Ls)
† to extend the notion of

effective resistance to directed signed networks whose Laplacian L is a normal matrix
and −L is EEP. As already observed in Remarks 4.6 and 4.13, when the network
is directed (L†)s and (Ls)

† are no longer equivalent, which motivates us to propose
a definition that encompasses both notions. As explained more in details below in
Section 5.1, one of the two notions is novel, while the other extends an available
definition to the signed graph case.

Definition 5.1. The effective resistance between two nodes i, j ∈ {1, . . . , n} of a
signed digraph whose corresponding Laplacian L is normal and s.t. −L is EEP, is
given by

Rij(X) = [X]ii + [X]jj − [X]ij − [X]ji

= (ei − ej)TX(ei − ej), X ∈ {(Ls)†, (L†)s}(5.1)
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i.e., X = [X]ij is either given by the pseudoinverse of the symmetrization of the
Laplacian (Ls)

†, or by the symmetrization of the Laplacian pseudoinverse (L†)s. The
effective resistance matrix R(X) = [Rij(X)] is defined as

(5.2) R(X) = DX11
T + 11TDX − 2X, X ∈ {(Ls)†, (L†)s}

where DX = diag ([X]11, . . . , [X]nn) is a diagonal matrix whose elements are the
diagonal elements of X. The total effective resistance is defined as

(5.3) Rtot(X) =
1

2
1TR(X)1, X ∈ {(Ls)†, (L†)s}.

As its counterpart for undirected graphs (see [24, 20, 15]), for both X ∈ {(Ls)†, (L†)s}
the effective resistance (5.1) is still nonnegative and symmetric. Its square root is a
metric, and the effective resistance matrix (5.2) is a Euclidean distance matrix, i.e., it
has nonnegative elements, zero diagonal elements, and it is negative semidefinite on
1⊥ [20], see the following lemma.

Lemma 5.2. The square root of the effective resistance (5.1) between two nodes
i, j ∈ {1, . . . , n} of a signed digraph with normal Laplacian L is a metric: it is non-
negative, symmetric and it satisfies the triangle inequality. The effective resistance
matrix (5.2) is a Euclidean distance matrix.

Proof in Appendix E. The last part of the proof follows [20, Section 2.8] and is here
reported for completeness.

Remark 5.3. For digraphs, the main difference between (L†)s and (Ls)
† is that

in the first the pseudoinverse respects the physical asymmetric nature of the problem,
while in the latter any asymmetry is lost when taking the pseudoinverse. This affects
the two values of effective resistance R((L†)s) and R((Ls)

†). In particular, from (4.2)
we have that R((Ls)

†) 6= R((L†)s), as the following lemma states.

Lemma 5.4. Let G(A) be a signed graph with signed Laplacian L, and assume
that L is normal and −L is EEP.

(i) The effective resistances Rij((Ls)
†) and Rij((L

†)s), defined in (5.1), satisfy

Rij((L
†)s) ≤ Rij((Ls)†) i, j = 1, . . . , n.

(ii) The total effective resistances Rtot((Ls)
†) and Rtot((L

†)s), defined in (5.3),
satisfy

Rtot((Ls)
†) = n

n∑
i=2

1

Re[λi(L)]
, Rtot((L

†)s) = n

n∑
i=2

Re[λi(L
†)]

Rtot((L
†)s) ≤ Rtot((Ls)

†).

Proof in Appendix E.

Remark 5.5. Rij(X) of eq. (5.1) is a quadratic form generated by the matrix X,

i.e., only the symmetric part of X matters: Rij(X) = Rij

(
X+XT

2

)
. When X = (L†)s

this has a twofold consequence. First, it is

(5.4) Rij((L
†)s) = Rij(L

†)

i.e., the effective resistance can be built directly from L† without any symmetrization
on the Laplacian. Second, for signed graphs, to ensure that Rij(L

†) is well-defined
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Figure 1: Example 5.7. (a): total effective resistance Rtot(X), with X ∈
{(L†)s, (Ls)†}, for a sequence of cycle unsigned digraphs with increasing number of
nodes, n = 2, . . . , 50. (b): cycle unsigned digraph with n = 20. (c): hitting times
Hij(X) from node i = 1 to node j = 1, . . . , 20, with X ∈ {L†, (L†)s, (Ls)†}.

(i.e., Rij(L
†) ≥ 0 for all i, j), EEP of −L† is not sufficient. From Theorem 4.12,

a normality assumption on the Laplacian must be added in Definition 5.1. Notice
that on signed digraphs the same assumption is needed also for the other version of
effective resistance given in Definition 5.1, in order to guarantee that R((Ls)

†) ≥ 0
for all i, j, see Theorem 3.6.

Remark 5.6. Definition 5.1 becomes less restrictive in the case of unsigned di-
graphs. In that case, it is sufficient to assume that the Laplacian is weight balanced
and irreducible since, applying Theorem 4.4, it holds that both (Ls)

† and (L†)s are
psd of corank 1.

Example 5.7. Let G(A) be a nonnegative, unweighted, directed, cycle graph (see
Fig. 1b), whose Laplacian L is a normal matrix with eigenvalues 1+eiθk , with θk =

π
(
1 − 2k

n

)
, for all k = 0, . . . , n − 1. Then, Rtot((Ls)

†) = n(n2−1)
6 (see e.g. [39]),

Rtot((L
†)s) = n

∑n
k=2 Re[ 1

λk(L) ] = n
∑n
k=2

1+cos θk
(1+cos θk)2+sin2 θk

= n
∑n
k=2

1
2 = n(n−1)

2 ,

and we obtain Rtot((L
†)s) ≤ Rtot((Ls)

†) for all n ≥ 2, see Fig. 1a.

The two notions of effective resistance in (5.1) differ also w.r.t. Rayleigh’s mono-
tonicity law. While R((Ls)

†) obeys it (see Lemma 5.8), R((L†)s) does not (see coun-
terexample 5.9).

Lemma 5.8. Consider two signed digraphs G(Ai) with signed Laplacian Li, i =
1, 2. Assume that Li is normal and that −Li is EEP, i = 1, 2. If A1 ≥ A2 (component-
wise) then Rtot((L1s)

†) ≤ Rtot((L2s)
†), where Rtot((Lis)

†) (i = 1, 2) is the total
effective resistance associated with G(Ai).

Proof in Appendix E.

Example 5.9. Consider the following signed Laplacian matrices

L1 =


0.34 −0.23 0.18 −0.29
−0.23 0.49 −0.05 −0.21
−0.29 −0.21 0.26 0.24
0.18 −0.05 −0.39 0.26

 , L2 =


0.16 −0.19 0.25 −0.22
−0.19 0.34 0 −0.15
−0.22 −0.15 0.07 0.3
0.25 0 −0.32 0.07

 .
Both L1 and L2 are normal and it is sp(L1) = {0, 0.33 ± 0.50i, 0.68} and sp(L2) =
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{0, 0.49, 0.77 ± 0.46i}, i.e., −L1,−L2 are marginally stable of corank 1. Then, −L1

and −L2 are EEP. The corresponding adjacency matrices A1, A2 satisfy A1 ≥ A2.
The total effective resistances associated with G(A1),G(A2) satisfy:

Rtot((L1s)
†) = 29.83 ≤ 111.89 = Rtot((L2s)

†)

Rtot((L
†
1)s) = 13.92 ≥ 11.01 = Rtot((L

†
2)s)

Only the effective resistance calculated according to (Ls)
† obeys Rayleigh’s mono-

tonicity law.

5.1. Comparison with other notions of effective resistance. Of the two
notions in Definition 5.1, one, R((L†)s), is novel and proposed here for the first time.
The other, R((Ls)

†), has already been used in the literature, but not for signed
digraphs. In [39, 41] the authors introduce a notion of effective resistance for strongly
connected unsigned digraphs. As shown in Lemma 4.14, their effective distance is
based on the pseudoinverse of the symmetrization (Ls)

†, and can be extended to
signed digraphs. It corresponds to R((Ls)

†) computed in (5.2) whenever (Ls)
† can be

computed. Formally the definition of [41] can be stated as

(5.5) R(X) = DX11
T + 11TDX − 2X, where X satisfies (4.3)

Comparing our R((Ls)
†) to (5.5) we have:

• The definition (5.5) was developed for unsigned strongly connected digraphs
and does not require L to be normal, nor weight balanced;

• Our R((Ls)
†) is valid for signed graphs for which L is normal and −L EEP.

The notion of effective resistance (5.5) has been considered e.g. in [17], where the
author proposes a symmetrization of digraphs which preserves pairwise effective re-
sistances.

6. Further applications and extensions: an outlook. In this section we
outline a few possible further applications of our signed Laplacian pseudoinverse to
other contexts.

6.1. Effective vs equivalent conductance. A concept often associated to
effective resistance is that of effective conductance C, defined as the Hadamard inverse
of R (see e.g. [24]): Cij = 1

Rij
. For Laplacians that are normal and EEP, we can use

our notions of pseudoinverse to extend it to signed digraphs in the intuitive way, as

(6.1) Cij(X) =

{
1

(ei−ej)TX(ei−ej)
, i 6= j, X ∈ {(Ls)†, (L†)s}

0, i = j

However, an alternative definition is also possible, reflecting the fact that such Lapla-
cians and their pseudoinverses share the same properties (Corollary 4.15). To avoid
ambiguity in the terminology, we refer to this new concept as equivalent conductance.

Definition 6.1. The equivalent conductance between two nodes i, j ∈ {1, . . . , n}
of a signed digraph whose corresponding Laplacian L is normal and −L is EEP, is
given by

(6.2) C̃ij(X) = (ei − ej)TX(ei − ej), X ∈ {Ls, ((L†)s)†}

where X = [X]ij is either given by the symmetrization of the Laplacian Ls, or by the
pseudoinverse of the symmetrization of the Laplacian pseudoinverse ((L†)s)

†. The
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equivalent conductance matrix C̃(X) = [C̃ij(X)] is defined as

(6.3) C̃(X) = DX11
T + 11TDX − 2X, X ∈ {Ls, ((L†)s)†}

where DX = diag ([X]11, . . . , [X]nn). The total equivalent conductance is defined as

(6.4) C̃tot(X) =
1

2
1T C̃(X)1, X ∈ {Ls, ((L†)s)†}.

Obviously, as in (5.4), C̃ij(Ls) = C̃ij(L). The equivalent conductance shares the
properties of the effective resistance listed in Lemma 5.2 and Lemma 5.4:

• The square root of the equivalent conductance matrix C̃ in (6.3) is a metric,
and C̃ is a Euclidean distance matrix;

• The equivalent conductances C̃ij (6.2) satisfy: C̃ij(Ls) ≤ C̃ij(((L
†)s)

†), for

all i, j = 1, . . . , n. The total equivalent conductances C̃tot (6.4) satisfy:
C̃tot(Ls) = n ·

∑n
i=2 Re[λi(L)], C̃tot(((L

†)s)
†) = n ·

∑n
i=2

1
Re[λi(L†)]

, and

C̃tot(Ls) ≤ C̃tot(((L
†)s)

†).
Instead, the effective conductance C in (6.1) in general does not share all the

properties of the effective resistance, as shown in the following example.

Example 6.2. Consider the following signed Laplacian matrix

L =


5.94 −2.61 1.79 1.21 −6.32
−2.61 7.76 −0.82 −1 −3.33
1.79 −0.82 0.65 0.36 −1.97
−6.32 −3.33 −1.97 7.67 3.95
1.21 −1 0.36 −8.24 7.67

 ,
which is normal and such that −L is EEP.

To show that the effective conductance is not a Euclidean distance matrix, we
show that there exists z ⊥ 1 such that zTC(X)z ≥ 0, X ∈ {(Ls)†, (L†)s}. With z =
[−2.6 0.7 0.5 0.4 1]T ∈ span(1⊥) it is zTC((Ls)

†)z = 3.4170, zTC((L†)s)z = 8.3626.
To show that the square root of the effective conductance is not a metric, we

show that the triangle inequality does not hold. Let i = 1, k = 3, j = 4; it is√
C13((Ls)†) +

√
C34((Ls)†) = 0.5819 ≤ 0.9689 =

√
C14((Ls)†),√

C13((L†)s) +
√
C34((L†)s) = 0.5827 ≤ 1.0065 =

√
C14((L†)s).

6.2. Kron reduction vs EEP for undirected signed graphs. As Theo-
rem 4.9 shows, for undirected graphs the Kron reduction procedure can be extended
to signed graphs. Similarly to the unsigned graph case (see e.g. [15, Proposition 5.8]),
one of the features of Kron reduction on signed graphs is that the effective resistance
is invariant under Kron reduction, as shown in the following lemma.

Lemma 6.3. Let G(A) be a signed undirected graph with signed Laplacian L, and
assume that −L is EEP. Let α (with card(α) ∈ [2, n− 1]) and β = {1, . . . , n} \α be a
partition of the node set V. Let Gr be the signed undirected graph obtained by applying
the Kron reduction on G, and let Lr = L/L[β] be its Laplacian. Then, the effective
resistance (5.1) between two nodes i, j ∈ α can be equivalently computed as:

Rij(L
†) = (ei − ej)TL†(ei − ej) = (ei[α]− ej [α])T (Lr)

†(ei[α]− ej [α]) := Rij((Lr)
†).
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(a) (b)

Figure 2: Example 6.4. Conditions “−L is EEP” (K1) and “Lr is psd and Lr 6= L”
(K2) (left panels) and corresponding size of the Kron-reduced Laplacian Lr (right
panels), for a sequence of graphs with edge probability given by p and increasing
number of negative edges (with P [negative edge] = p · pne, pne ∈ {0.05, 0.1, . . . , 0.6}).
(a): p = 0.2. (b): p = 0.5.

Proof in Appendix E.
In addition, combining the results of Theorem 4.9 and [10] we have the following

2 sufficient conditions for L to be psd of corank 1:
K1: −L is EEP;
K2: Lr is psd, where Lr ∈ Rcard(α)×card(α) and α is the set of nodes incident to

negatively weighted edges.
The following example suggests that the first sufficient condition is significantly less
conservative, especially for dense graphs.

Example 6.4. In Figure 2 we consider a sequence of signed connected undirected
graphs G with n = 100 nodes, in which the edge weights are drawn from a uniform
distribution (where p is the edge probability) and with increasing number of negative
edges (proportional to a parameter pne). In particular, p = 0.2 for Fig. 2a and p = 0.5
for Fig. 2b, and P [negative edge] = p · pne, where pne ∈ {0.05, 0.1, . . . , 0.6}. For
each value of pne, we consider 1000 graphs G, and we compare the conditions K1 and
K2. Both conditions are equivalent to L psd; however, as shown in the left panels
of Fig. 2, the condition K2 is significantly more conservative than K1, especially for
dense graphs (Fig. 2b, left panel). In short, it is not always convenient to determine
if L is psd by applying the Kron reduction on the graph and using the Kron-reduced
Laplacian Lr (whose size card(α) in shown in the right panels of Fig. 2).

6.3. Hitting and commuting times. Another application of the Laplacian
pseudoinverse is in the computation of hitting and commuting times in random walks
[31, 20, 6]. The hitting time between two nodes i and j, denoted Hij , corresponds
to the average number of node transitions required to reach node j for the first time
starting from node i. The commuting time between two nodes i and j, denoted Fij ,
corresponds to the average number of steps taken in a random walk starting from
node i, visiting node j for the first time, and returning back to node i.

In [6] the authors express the hitting and commuting times for (unsigned) digraphs
in terms of the pseudoinverse of the normalized Laplacian of the network, the latter
defined as L := I − Σ−1A. In particular, for a weight balanced (unsigned) digraph,
the expected hitting time between node i and j, i, j ∈ {1, . . . , n}, is given by

(6.5) Hij = n · (L†ii − L
†
ji),
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where L† is the pseudoinverse of L, while the expected commuting time between nodes
i and j, i, j ∈ {1, . . . , n}, is given by

(6.6) Fij = Hij +Hji = n · (L†ii + L†jj − L
†
ji − L

†
ij).

Comparing with (5.1), it is evident that commuting times are strictly related to
effective resistance:

F ((L†)s) = nR((L†)s) = n
(
D(L†)s11

T + 11TD(L†)s − 2(L†)s
)

and, from (5.4),

F (L†) = nR(L†) = F ((L†)s) = n
(
DL†11

T + 11TDL† − (L† + (L†)T )
)
.

Coherently with (5.1), commuting times can be defined also in terms of (Ls)†.
It is evident from (6.5) that also hitting times are related to R, as they are

essentially “half” of the effective resistance. However, due to the directedness nature
of Hij , the only meaningful way to express hitting times is in terms of L†, and in
matrix form it reads

H(L†) = n(DL†11
T − (L†)T ).

Defining hitting times in terms of (L†)s or (Ls)† would lead to meaningless quantities,
in which the directionality of the edges is lost, as Example 5.7 shows.

Extending this direction-preserving definition of hitting times (6.5) to signed
graphs is however problematic, as H(L†) may have negative entries, even when L
is normal. Signed graphs are not suitable objects to describe random walk in Markov
chains, as transition probabilities must necessarily be nonnegative. Nevertheless, as
long as we deal with unsigned digraphs, all our considerations about hitting times
make sense, as Example 5.7 shows.

Example 5.7 (cont’d). Consider again the cycle graph of Fig. 1b with unit edge
weights. Observe that in this case L = L (and hence L† = L†, etc.) Computing
hitting times according to (L†)s, (Ls)

†, it is:

Hij((L
†)s) =

{
n
2 if j 6= i

0 if j = i
, Hij((Ls)

†) = (n− |j − i|) · |j − i|

i.e., the directionality of the walks along the graph is lost. Instead, computing hitting
times according to L† it is

Hij(L
†) =

{
j − i if j ≥ i
n+ (j − i) if j < i

i.e., Hij(L
†) indeed captures the walk length i→ j along the cycle. These results are

illustrated in Fig. 1c for the cycle digraph with n = 20 nodes of Fig. 1b.

7. Conclusion. For signed graphs, it is shown in this paper that when the asso-
ciated Laplacians are EEP and normal, then Laplacians and Laplacian pseudoinverses
share the same properties (Perron-Frobenius, marginal stability, and psd of the sym-
metric part). This class of Laplacians include symmetric (EEP) matrices as a subclass,
and in it all objects that can be built on the Laplacian pseudoinverse (effective resis-
tance, equivalent conductance, Kron reduction) are univocally defined. When instead
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we look at digraphs, then multiple constructions are possible for these objects. Each
definition seems to have pros and cons, even though several aspects and applications
still require a more thorough analysis.

Appendix A. Proof of Lemma 4.2. Assume that L is weight balanced
and of corank 1. Eqs. (4.1a)-(4.1d) are all well-known for L symmetric, and follow
easily also for range symmetric matrices. They are proven here only for sake of
completeness. Eq. (4.1a) is a consequence of L commuting with L†. As for eq. (4.1b),
from (L†L)T = L†L and N (LT ) = 1 (L is weight balanced and of corank 1) it follows
that 1TL† = 1TL†LL† = 1T (L†L)TL† = 1TLT (L†)TL† = 0, i.e., L† has 1 as left
eigenvector relative to 0. The proof for the right eigenvector is identical. Concerning

eq. (4.1c), from L†1 = 0 it is L†Π = L†(I − 11T

n ) = L†, and similarly for ΠL† = L†.
For eq. (4.1d), since L+γJ is nonsingular, as in [13], it is enough to show the following:

(L+ γJ)(L† +
1

γ
J) = LL† + γJL† +

1

γ
LJ + J2 = Π + J = I − J + J = I,

where we have used the properties of Lemma 4.1. Then, N (L) = N (LT ) = N (L†) =
N ((L†)T ) = span(1) and (4.1d) imply that L† is weight balanced of corank 1. Notice
that irreducibility of L and L† follows from Lemma 3.3.

Finally, we need to show that if L is normal then L† is normal. L normal, J
symmetric and LJ = LTJ = JL = JLT = 0 imply L + γJ normal, which means
that (L + γJ)−1 is also normal. Since J is symmetric (hence normal) and satisfies
the properties of Lemma 4.1, to show that L† is normal it is sufficient to observe that
(L+ γJ)−1J = 1

γJ = J(L+ γJ)−1.

Appendix B. Unsigned graph case.

Proof of Theorem 4.4. In Theorem 3.1 it is shown that when G(A) is unsigned

and L is weight balanced, then Ls = L+LT

2 is psd of corank 1. In the following proof,
we first show (iii). Then, we prove (iii)=⇒(ii), (ii)=⇒(i), and (ii)=⇒(iv).

(iii) Using equation (4.1d) of Lemma 4.2 we can explicitly write (L†)s as follows:

(L†)s =
(L+ γJ)−1 + (LT + γJ)−1

2
− 1

γ
J

=(L+ γJ)−1L
T + γJ + L+ γJ

2
(LT + γJ)−1 − 1

γ
J

=(L+ γJ)−1

(
(Ls + γJ)− (L+ γJ)J(LT + γJ)

γ

)
(LT + γJ)−1

∗
=(L+ γJ)−1

(
(Ls + γJ)− γJ

)
(LT + γJ)−1

=(L+ γJ)−1Ls(L+ γJ)−T .

In the step marked ∗ we have used the properties of J listed in Lemma 4.1. Hence,
since Ls is psd of corank 1 so must be (L†)s, and, since N (Ls) = span(1), then
N ((L†)s) = span(1).

(iii)=⇒(ii) If (L†)s is psd then all the eigenvalues of L† must have nonnegative
real part, and L† must be a range symmetric matrix, i.e., N (L†) = N ((L†)T ). Assume
by contradiction that ∃ v ∈ N (L†), v /∈ span(1). Then (L†)sv = 0, which implies a
contradiction since N ((L†)s) = span(1). Hence, L† must be of corank 1.

(ii)=⇒(i) This statement follows from Theorem 3.6; we report here the proof for
completeness. Let −L† be marginally stable (and weight balanced) of corank 1, i.e.,
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0 = λ1(L†) < Re[λ2(L†)] ≤ · · · ≤ Re[λn(L†)] and N (L†) = N ((L†)T ) = span(1).

Choosing d > max
i=2,...,n

∣∣λi(L†)∣∣2
2Re[λi(L†)]

, B = dI − L† has ρ(B) = d as a simple eigenvalue

of eigenvector 1 and so does BT . Hence B,BT ∈ PF , or, from Theorem 2.3, B
∨
> 0,

i.e., B is eventually positive. Therefore, from Lemma 2.5 −L† is EEP.
(ii)=⇒(iv) Finally, (iv) holds, i.e., (Ls)

† is psd of corank 1, because (Ls)
† is the

pseudoinverse of an unsigned, symmetric, and irreducible Laplacian matrix.

Appendix C. Signed undirected graphs case.

Proof of Theorem 4.8.
(i)=⇒(ii) To show that L† is psd of corank 1, denote by λi(L) the eigenvalues of

L, of eigenvectors 1, v2, . . . vn. Using Theorem 3.4, since −L is EEP then L is psd
of corank 1, meaning that 0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L). Consider eq. (4.1d)
of Lemma 4.2. Choosing γ 6= 0, since J is the orthogonal projection onto N (L) =
N (LT ) = span(1), the effect of adding γJ to L is only to shift the 0 eigenvalue to γ,
while λ2(L), . . . , λn(L) are unchanged (see [22, Thm 2.4.10.1]). For the nonsingular
L + γJ the inverse (L + γJ)−1 has eigenvalues 1

γ ,
1

λ2(L) , . . . ,
1

λn(L) of eigenvectors

1, v2, . . . vn. From orthogonality, (L + γJ)−1 − 1
γJ only shifts the 1

γ eigenvalue back
to the origin without touching the other eigenvalues.

(i)=⇒(iii) Assume that −L is EEP, that is, L is psd of corank 1 (see Theorem 3.4).
Then L† is also psd of corank 1, see Lemma 4.2 and proof (i)=⇒(ii). To prove that
−L† is EEP, we can use Theorem 3.4. The proof is here reported for completeness. In
particular, from Lemma 4.2, we know that L† is psd with 0 = λ1(L†) < λ2(L†) ≤ · · · ≤

λn(L†) and with 1 as left/right eigenvector for 0. If we choose d > max
i=2,...,n

λi(L
†)

2
,

then B = dI − L† has ρ(B) = d as a simple eigenvalue of eigenvector 1 and so does

BT . Hence B,BT ∈ PF , or, from Theorem 2.3, B
∨
> 0, i.e., B is eventually positive.

Hence from Lemma 2.5 −L† is EEP.
(iii)=⇒(i) Since L† is weight balanced of corank 1 with span(1) = N (L†) =

N ((L†)T ), it is itself a signed Laplacian. The argument can be proven in a similar
way as the opposite direction, observing that L = (L†)†.

Proof of Theorem 4.9. Let α (with card(α) ∈ [2, n−1]) and β = {1, . . . , n}\α be
a partition of the node set V meaning that, after an adequate permutation, L can be

rewritten as L =

[
L[α] L[α, β]
L[β, α] L[β]

]
. Let Lr = L/L[β] = L[α]−L[α, β]L[β]−1L[β, α] ∈

Rcard(α)×card(α) be the Kron reduced matrix. Note that Lr is symmetric and 1card(α) ∈
N (Lr) (see also [13, Lemma II.1]), meaning that Lr is itself a signed Laplacian.

(i)=⇒(ii)⇐⇒(iii). Assume that −L is EEP or, equivalently, that L is psd of
corank 1 (see Theorem 3.4). Then L[β] is also psd as it is a principal submatrix of L.
In what follows we prove first, by contradiction, that L irreducible and psd of corank
1 imply that L[β] is actually pd. Then, we show that Lr is psd of corank 1.

Let card(β) = 1 and assume, by contradiction, that L[β] = 0. However, L psd
means that L has the row and column inclusion property, i.e., if the diagonal element
L[β] is zero then L[α, β] = 0 and L[β, α] = 0, which contradicts the hypothesis that
L is irreducible. Hence, L[β] > 0 (pd). Now we repeat the same argument for
1 < card(β) ≤ n− 2: suppose by contradiction that ∃ v ∈ Rcard(β) s.t. L[β]v = 0 (i.e.,

L[β] is not pd). Then v̄ =

[
0
v

]
is s.t. Lv̄ = 0 (since v̄TLv̄ = 0), which contradicts
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the hypothesis that L has corank 1 since 1 ∈ N (L) and v̄ /∈ span(1) (notice that
if v = 1card(β), then either L[β, α] is the zero matrix - in contradiction with the

hypothesis that L is irreducible -, or

[
1card(α)

0

]
,

[
0

1card(β)

]
∈ N (L) - in contradiction

with the hypothesis that L has corank 1). Therefore, L[β] is pd.
Rewrite L as follows, where L[α, β]L[β]−1 = (L[β]−1L[β, α])T :

L =

[
I L[α, β]L[β]−1

0 I

] [
Lr 0
0 L[β]

] [
I 0

L[β]−1L[β, α] I

]
,

Applying Sylverster’s law of inertia, L psd of corank 1 and L[β] pd imply Lr psd of
corank 1 or, equivalently (from Theorem 3.4), −Lr EEP.

(i)⇐⇒(ii)⇐⇒(iii). Let α be the set of nodes incident to negatively weighted edges.
In what follows, the steps marked by the symbol ? follow from Theorem 3.4 while the
step marked by the symbol 4 from [10, Theorem 1]:

−L EEP
?⇐⇒ L psd of corank 1

4⇐⇒ Lr psd of corank 1
?⇐⇒ −Lr EEP.

Proof of Lemma 4.11. From L1 = (k1L1 + k2L2)1 = k1L11 + k2L21 = 0, it
follows that L is a signed Laplacian. Since L1, L2 are psd and k1, k2 > 0, then

xTLx = xT (k1L1 + k2L2)x = k1x
TL1x+ k2x

TL2x ≥ 0

that is, L is psd, and

xTLx = 0⇐⇒

{
xTL1x = 0

xTL2x = 0
⇐⇒ x = span(1),

that is, L is of corank 1. Applying Theorem 3.4, L psd of corank 1 implies −L EEP
which concludes the proof.

Appendix D. Signed directed graphs case.

Proof of Theorem 4.12.
(i)⇐⇒(iii) The proof follows the proof of Theorem 4.8, with the difference that

marginal stability of the Laplacian and its pseudoinverse has to be considered in-
stead of positive semidefiniteness. An important observation, implied by eq. (4.1d) of
Lemma 4.2, is that the eigenvalues of L and L† are such that

λ1(L†) = λ1(L) = 0

and, for each i = 2, . . . , n, there exists a (unique) k = 2, . . . , n (and viceversa) s.t.

λi(L
†) =

1

λk(L)
=⇒ Re[λi(L

†)] =
Re[λk(L)]

|λk(L)|2
.

Note that the reason behind different subscripts i and k is that we are assuming that
the eigenvalues of L and L† are ordered in a nondecreasing manner and, for instance,
Re[λi(L)] ≤ Re[λj(L)] 6=⇒ Re[λi(L

†)] ≤ Re[λj(L
†)]. If −L† is marginally stable with

corank 1, then B = dI−L† ∈ PF with d > max
i=2,...,n

∣∣λi(L†)∣∣2
2Re[λi(L†)]

= max
i=2,...,n

1

2Re[λi(L)]
.

Therefore, from Lemma 2.5, −L† is EEP.
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(iv) Assume that L is normal or, equivalently, that L† is normal (see Lemma 4.2).
Since L normal implies L weight balanced, the statements (i), (ii), and (iii) are still
equivalent. To show the equivalence with (iv), it is sufficient to apply Theorem 3.6
on L† since L† is itself a normal signed Laplacian of corank 1.

(v) Similarly to (iv), under the assumption that L is normal, the result follows
directly from Theorem 3.6 since (Ls)

† is the pseudoinverse of a symmetric signed
Laplacian which is psd of corank 1.

Proof of Remark 4.13. If L is normal (and of corank 1), then there exists an
orthonormal matrix U such that L = UDUT , with

D = µ1 ⊕ · · · ⊕ µn−2` ⊕
[
ν1 ω1

−ω1 ν1

]
⊕ · · · ⊕

[
ν` ω`
−ω` ν`

]
where µ1, . . . , µn−2` are the real eigenvalues of L and ν1±iω1, . . . , ν`±iω` are its com-
plex conjugate eigenvalues (with ` ∈

[
0, bn2 c

]
), and ⊕ indicates direct sum. Without

lack of generality, assume that the first column of U is 1√
n

, which means that µ1 = 0

and D = 0⊕ D̄, where

(D.1) D̄ = µ2 ⊕ · · · ⊕ µn−2` ⊕
[
ν1 ω1

−ω1 ν1

]
⊕ · · · ⊕

[
ν` ω`
−ω` ν`

]
is nonsingular. Then, Ls = U(0⊕ D̄+D̄T

2 )UT and L† = U(0⊕ D̄−1)UT , yielding

(L†)s = U

[
0 0

0 D̄−1+D̄−T

2

]
UT 6= U

[
0 0

0 ( D̄+D̄T

2 )−1

]
UT = (Ls)

†.

Proof of Lemma 4.14. Assume that L is normal and −L is EEP, i.e., −L is
marginally stable of corank 1. In the first part of the proof we write an explicit
expression for (Ls)

†, while in the second part of the proof we show that the matrix
X of eq. (4.3) is equal to (Ls)

†.
Using the same notation introduced in the proof of Remark 4.13, since L1 =

LT1 = 0 and L normal, then there exists an orthonormal matrix U such that L =
U(0 ⊕ D̄)UT where D̄ is given by (D.1). In particular, U can be chosen as U =[
1√
n
QT
]
, where Q ∈ Rn−1×n satisfies

(D.2) Q1n = 0, QQT = In−1, QTQ = I − 11T

n
= Π.

Let Λ := D̄+D̄T

2 = diag (µ2, . . . , µn−2`, ν1, ν1, . . . , ν`, ν`). Then, since L = QT D̄Q, the
pseudoinverse of its symmetric part is given by

(Ls)
† =

(
QT

D̄ + D̄T

2
Q
)†

= (QTΛQ)† = QTΛ−1Q.

To calculate X, defined in eq. (4.3), we need to define first a reduced Laplacian
matrix L̄, and then find the solution S of the Lyapunov equation L̄S + SL̄T = In−1.
Here we use the fact that, even if L̄ is not unique (since it depends on the choice
of Q), the computation of X in eq. (4.3) is independent of the choice of Q [41].
Therefore, we choose the matrix Q introduced previously in the definition of (Ls)

†

and, by construction, we obtain that

L̄ = QLQT = Q(QT D̄Q)QT = D̄
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is a projection of L onto 1⊥, and that −L̄ is Hurwitz. Then, S = 1
2Λ−1, is the unique

solution of the Lyapunov equation −L̄S + S(−L̄T ) = −In−1. Therefore,

X = 2QTSQ = QTΛ−1Q = (Ls)
†.

Proof of Lemma 4.16. Assume that L is weight balanced and −L is EEP, and
consider the matrix Lα := αL+ (1− α)Π, 0 ≤ α ≤ 1. The matrix Π is a symmetric,
unsigned Laplacian matrix, and −Π is EEP/marginally stable of corank 1. Since
N (L) = N (LT ) = N (Π) = span(1), then Lα is also a signed, weight balanced
Laplacian such that N (Lα) = N (LTα) = span(1), λ1(Lα) = 0, and λi(Lα) = αλi(L)+
(1−α) for all i = 2, . . . , n. Hence, Re[λi(Lα)] > 0 for all i and α ∈ [0, 1], which means
that −Lα is marginally stable of corank 1 and, therefore (see Theorem 3.6), EEP.

Appendix E. Applications.

Proof of Lemma 5.2. Theorem 4.12 shows that for a signed digraph with normal
Laplacian L s.t. −L is EEP, the matrices Ls, (Ls)

† and (L†)s are themselves signed
Laplacians and they are psd of corank 1 with N (Ls) = N ((Ls)

†) = N ((L†)s) =
span(1). Since Rij(X) is a quadratic form generated by X ∈ {(Ls)†, (L†)s}, then

Rij(X) = (ei − ej)TX(ei − ej) = ‖X 1
2 (ei − ej)‖22

= ‖X 1
2 (ej − ei)‖22 = (ej − ei)TX(ej − ei) = Rji(X)

and Rij(X) = (ei − ej)TX(ei − ej) = ‖X 1
2 (ei − ej)‖22 ≥ 0

for all i, j = 1, . . . , n, with Rij(X) = 0 if and only if i = j (since ei − ej ∈ span(1⊥)
when i 6= j). The triangle inequality holds since, for all i, j, k = 1, . . . , n, it is:√

Rik(X)+
√
Rkj(X) = ‖X 1

2 (ei − ek)‖2 + ‖X 1
2 (ek − ej)‖2

≥ ‖X 1
2 (ei − ek) +X

1
2 (ek − ej)‖2 = ‖X 1

2 (ei − ej)‖2 =
√
Rij(X)

Finally, to prove that R is a Euclidean distance matrix we need to show that
zTR(X)z ≤ 0 ∀ z ⊥ 1. Since X ∈ {(Ls)†, (L†)s} is psd with N (X) = span(1), then:

zTR(X)z = zT (DX11
T + 11TDX − 2X)z = −2zTXz ≤ 0 ∀ z ⊥ 1.

Proof of Lemma 5.4.
(i) We use the notation introduced in the proofs of Remark 4.13 and Lemma 4.14

to rewrite (L†)s and (Ls)
†:

(L†)s = QT
(D̄−1 + D̄−T

2

)
Q, (Ls)

† = QT
(D̄ + D̄T

2

)−1

Q

where Q satisfies (D.2) and D̄ is given by (D.1), i.e.,

D̄ = µ2 ⊕ · · · ⊕ µn−2` ⊕
[
ν1 ω1

−ω1 ν1

]
⊕ · · · ⊕

[
ν` ω`
−ω` ν`

]
with µ2 > 0, . . . , µn−2` > 0, ν1 > 0, . . . , ν` > 0. Therefore:

D̄−1 + D̄−T

2
= diag

(
1

µ2
, . . . ,

1

µn−2`
,

ν1

ν2
1 + ω2

1

,
ν1

ν2
1 + ω2

1

, . . . ,
ν`

ν2
` + ω2

`

,
ν`

ν2
` + ω2

`

)
(D̄ + D̄T

2

)−1

= diag

(
1

µ2
, . . . ,

1

µn−2`
,

1

ν1
,

1

ν1
, . . . ,

1

ν`
,

1

ν`

)
.
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Observe that the diagonal matrix(D̄ + D̄T

2

)−1

− D̄−1 + D̄−T

2
(E.1)

has nonnegative diagonal elements (i.e., it is psd) since 1
νi
≥ νi

ν2
i +ω2

i
for all i.

The difference between the effective resistances calculated according to (Ls)
† and

(L†)s is given by:

Rij((Ls)
†)−Rij((L†)s) = (ei − ej)T (Ls)

†(ei − ej)− (ei − ej)T (L†)s(ei − ej)
= (ei − ej)T

(
(Ls)

† − (L†)s
)
(ei − ej)

= (ei − ej)TQT
((D̄ + D̄T

2

)−1

− D̄−1 + D̄−T

2

)
Q(ei − ej) ≥ 0

since the matrix in eq. (E.1) is psd. Therefore, Rij((Ls)
†) ≥ Rij((L†)s) for all i, j.

(ii) From Theorem 4.12, L normal and −L EEP mean that both (Ls)
† and

(L†)s are psd of corank 1, and N ((Ls)
†) = N ((L†)s) = span(1). Hence, for X ∈

{(Ls)†, (L†)s}, it holds that R(X)1 = nDX1+ (1TDX1)1, which implies Rtot(X) =
1
21

TR(X)1 = n · (1TDX1) = n · Tr (X), since DX contains the diagonal elements of
X. The matrix (Ls)

† is symmetric, which means that λi((Ls)
†) = 1

λi(Ls) and, since

L is normal, λi(Ls) = Re[λi(L)] for all i = 2, . . . , n. Therefore,

Rtot((Ls)
†) = n · Tr

(
(Ls)

†) = n

n∑
i=2

λi((Ls)
†) = n

n∑
i=2

1

λi(Ls)
= n

n∑
i=2

1

Re[λi(L)]
.

Similarly, since L† is normal, λi((L
†)s) = Re[λi(L

†)] for all i = 2, . . . , n. Therefore,

Rtot((L
†)s) = n · Tr

(
(L†)s

)
= n

n∑
i=2

Re[λi(L
†)].

Finally, since λi(L
†) = 1

λi(L) , we obtain:

Rtot((L
†)s) = n

n∑
i=2

Re
[ 1

λi(L)

]
= n

n∑
i=2

Re[λi(L)]

|λi(L)|2
≤ n

n∑
i=2

1

Re[λi(L)]
= Rtot((Ls)

†).

Proof of Lemma 5.8. Let Σi = diag (Ai1), Li = Σi − Ai, i = 1, 2. If A1 ≥ A2

then Σ1 ≥ Σ2. It also holds that A1s =
A1+AT

1

2 ≥ A2s =
A2+AT

2

2 or, equivalently,
that As := A1s − A2s ≥ 0. Notice that Σ := Σ1 − Σ2 = diag (As1) is a diagonal
matrix with nonnegative elements on the diagonal. Define Ls := Σ−As, which is the
(symmetric) Laplacian corresponding to the undirected nonnegative graph G(As): Ls
may be reducible but it is psd since As ≥ 0. Hence 0 = λ1(Ls) ≤ λj(Ls) for all j.

Rewriting L1s :=
L1+LT

1

2 in terms of L2s :=
L2+LT

2

2 and Ls, i.e., L1s = L2s + Ls,
we can apply the monotonicity theorem [22, Corollary 4.3.12] and state that λk(L1s) =
λk(L2s + Ls) ≥ λk(L2s) for all k = 2, . . . , n. Therefore, it follows that:

Rtot((L1s)
†) = n · Tr

(
(L1s)

†) = n

n∑
i=2

λi((L1s)
†) = n

n∑
i=2

1

λi(L1s)

≤ n
n∑
i=2

1

λi(L2s)
= n

n∑
i=2

λi((L2s)
†) = n · Tr

(
(L2s)

†) = Rtot((L2s)
†).
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Proof of Lemma 6.3. After an adequate permutation, the Laplacian L of the

graph G(A) can be rewritten as L =

[
L[α] L[α, β]
L[β, α] L[β]

]
, and it holds that

[
Lr

L[β]

]
=

[
I −L[α, β]L[β]−1

0 I

]
L

[
I 0

−L[β]−1L[β, α] I

]
.

To compute (Lr)
† we use the identities [36] (XY Z)† = (X†XY Z)†Y (XY ZZ†)† and

(XY )† = (X†XY )†(XY Y †)†, obtaining:[
(Lr)

†

L[β]−1

]
=

(
L

[
I 0

−L[β]−1L[β, α] I

])†
L

([
I −L[α, β]L[β]−1

0 I

]
L

)†
=

(
Π

[
I 0

−L[β]−1L[β, α] I

])†
L†
([
I −L[α, β]L[β]−1

0 I

]
Π

)†
=

[
Π[α] 0

L[β]−1L[β, α] I

]
L†
[
Π[α] L[α, β]L[β]−1

0 I

]
that is, (Lr)

† = Π[α]L†[α, α] Π[α]. Then, given two nodes i, j ∈ α, it holds that:

Rij((Lr)
†) = (ei[α]− ej [α])T (Lr)

†(ei[α]− ej [α])

= (ei[α]− ej [α])TΠ[α]L†[α, α] Π[α](ei[α]− ej [α])

= (ei[α]− ej [α])T L†[α, α] (ei[α]− ej [α]) = (ei − ej)TL† (ei − ej) = Rij(L
†)
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