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Abstract— In this work we consider a nonlinear intercon-
nected system describing a decision-making process in a com-
munity of agents characterized by the coexistence of collabora-
tive and antagonistic interactions. The resulting signed graph
is in general not structurally balanced. It is shown in the paper
that the decision-making process is affected by the frustration
of the signed graph, in the sense that a nontrivial decision can
be reached only if the social commitment of the agents is high
enough to win the disorder introduced by the frustration in the
network. The higher the frustration of the graph, the higher
the commitment strength required from the agents.

I. INTRODUCTION

Models of interconnected systems are widely used to
gain insight into the complex dynamics of groups of agents
and into their emerging behavior. For instance, in opinion
dynamics, each agent can represent an individual of a “social
network”, and it is itself represented as a node in a graph.
The edges of the network correspond in this case to the
social ties between individuals, and form an adjacency matrix
sometimes referred to as “sociomatrix” [1]. When the social
ties are all of collaborative type, then it is natural to consider
an adjacency matrix which is nonnegative. When instead
collaborative and antagonistic interactions coexist, then it is
convenient to consider a signed adjacency matrix. In this
case also the corresponding graph is a signed graph. Signed
graphs have been studied for a long time in social network
theory [1], [2]. For instance, the notion of structural balance
which was introduced by F. Harary in [3], [4], captures the
graph-theoretical meaning of common sense notions like “the
friend of my enemy is my enemy”, and extends them to
arbitrary graphs. It states that a graph is structurally balanced
if all its cycles are positive, i.e., are formed by an even
number of negative edges. In particular, if one considers the
variant of the Laplacian matrix associated to a signed graph
[5], here called signed Laplacian, then structural balance of
a signed graph corresponds to the signed Laplacian having
0 among its eigenvalues.

When a connected signed graph is not structurally bal-
anced, then its signed Laplacian does not have 0 as an
eigenvalue and it becomes of interest to give an estimation of
the distance of the graph from the balanced state. For the case
of unweighted graphs, the literature offers several measures
of graph imbalance based on different properties of the
signed graphs, such as cycles, eigenvalues, frustration, see
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[6] for an overview. In particular, it is common to consider
the frustration index (or line index of imbalance [7]), i.e.,
the minimum number of edges whose deletion makes the
signed graph structurally balanced [8], [9], [10]. The actual
computation of this value is a NP-hard problem, and several
algorithms have been proposed, see for example [11] which
is based on the idea that the frustration index is equal to
the minimum number of negative fundamental cycles of the
graph, or [12] where the analogy with the statistical physics
problem of minimizing the energy of an Ising spin glass is
used. For small-medium size networks, [9] shows how to
compute an exact value of the frustration index as solution
of an optimization problem. Given the complexity of the
problem, upper and lower bounds for the frustration index
have been introduced in the literature, based on the properties
of the graph [13], [14], or related to the smallest strictly
positive eigenvalue of the signed unweighted Laplacian [8],
[15], or of the normalized signed unweighted Laplacian [16].
In this paper, such notions are extended to weighted signed
graphs, see also [17]. In particular, we show that the weighted
frustration index has a behavior similar to its unweighted
counterpart, provided we look at normalized Laplacians.

If we consider a multiagent dynamical system on a signed
network, then it makes sense to identify the sign of an edge
with the sign of the corresponding entry of the Jacobian
matrix of the dynamics: friends exert a positive influence and
“enemies” a negative one. We assume that this sign identi-
fication is valid everywhere, not just around an equilibrium
point. The models proposed in e.g. [18], [19], [20] serve
well for this scope and will be adopted also in this paper.
They essentially use sigmoidal nonlinearities, multiplied by
the edge weights, to describe the influences of an agent on the
other agents [21], [22], and resemble closely interconnected
models used to describe animal group behavior [23], [19] or
neural networks [24], [25].

Similarly to [19], [20], we choose the weights so as to get
a linearization which is a Laplacian matrix, and we endow
our multiagent model with a scalar parameter representing
the “social effort” of the group of agents, playing the role of
bifurcation parameter. For low values of this parameter, the
linearization at the origin is globally asymptotically stable,
meaning that the commitment of the agents is not enough to
achieve a nontrivial decision. As the social effort grows, the
system experiences a pitchfork bifurcation, with the origin
becoming unstable and two nontrivial locally asymptotically
stable equilibria appearing, playing the role of alternative
decision states for the community. However, unlike for the
cooperative systems studied in [19], [20], for our signed



graphs the value of social effort at which the bifurcation
is crossed is not fixed and constant, but it depends on
the frustration index of the signed graph. In particular we
show in the paper that the frustration index of a structurally
unbalanced graph is (almost) proportional to the smallest
eigenvalue of the normalized signed Laplacian, which in turn
tells us that the social effort needed to achieve a nontrivial
decision grows with the frustration index. In other words,
in order to achieve a nontrivial collective decision, a social
network with frustration requires a higher commitment of its
individuals than a structurally balanced social network.

In the structurally balance case, our system is monotone
[26] and its behavior is identical to that of the cooperative
system analyzed in [19], [20], modulo a change of orthant.
This means that on each decision state two factions will form,
having opposite opinions. Also in our structurally unbalanced
graphs the decision states that appear for high enough values
of social commitment are of mixed sign, i.e., two factions
emerge even in absence of structural balance.

Like in the cooperative case, a second threshold on the
value of the social commitment is possible, beyond which
a second bifurcation happens, meaning that more equilibria
(i.e., decision states) can appear. Similarly to [20], we show
that this second threshold is related to the algebraic connec-
tivity of the signed graph. Unlike the smallest eigenvalue of
the normalized signed Laplacian, the algebraic connectivity
is basically insensitive to frustration. Hence, as the frustration
grows, the gap between first and second eigenvalue of
the normalized signed Laplacian shrinks, meaning that the
interval of values in which only two competing equilibria
coexist also shrinks. Interpreted as a robustness property, this
result says that nonzero decision states become less robust
to perturbation (of topology, edge weight, edge or node loss,
etc.) as the frustration grows.

II. SIGNED GRAPHS AND FRUSTRATION

Let G = (V, E) be a graph with vertex set V =
{v1, . . . , vn} and edge set E = {e1, . . . , em}, and let n = |V|
be the number of nodes in the graph. In this work we will
consider undirected graphs, for which (i, j) ∈ E implies
(j, i) ∈ E , without loops and multiple edges. Associated with
the graph G is the adjacency matrix A = [aij ] ∈ Rn×n in
which aij 6= 0 iff (j, i) ∈ E ; G undirected and without loops
implies that the matrix A is symmetric with null-diagonal.
A graph G is signed if each of its edges is labeled by a
sign, sign (ei) = ±1 for all i = 1, . . . ,m, which translates
in sign (aij) = sign (aji) = ±1 if (i, j) ∈ E .

The signed Laplacian of a graph G is the symmetric matrix
L = ∆−A, where ∆ is a diagonal matrix whose elements are
given by δi =

∑n
j=1|aij | for all i. If the graph G is unsigned,

this definition equals the standard Laplacian matrix.
We further assume that the graph is connected, i.e., there

exists a path from a node vi to a different node vj for every
vi, vj ∈ V , property that translates into the adjacency matrix
A being irreducible. As a consequence, G does not have
isolated vertices, i.e., δi 6= 0 for all i. Hence, the matrix
∆−1 is well-defined and positive definite.

The normalized signed Laplacian of a graph G, see [17],
is the non-symmetric (symmetrizable [21]) matrix defined as
L = ∆−1L = I −∆−1A.

A cycle of a signed graph G is said positive if it contains
an even number of negative edges, negative otherwise [11].
A graph is structurally balanced if all its cycles are positive.

A. Frustration index and the smallest Laplacian eigenvalue

The following theorem is a well-known result in the
literature, see for example [5], [27].

Theorem 1 Let G be a connected signed graph. Then the
following conditions are equivalent:

1) G is structurally balanced;
2) There exists a signature matrix S = diag {s1, . . . , sn}

with diagonal entries si = ±1, such that SLS has all
nonpositive off-diagonal entries;

3) λ1(L) = 0.

For unweighted graphs a measure of graph imbalance is
given by the frustration index, while other works instead
consider the algebraic conflict, i.e., the least Laplacian eigen-
value [6], [28]. These measures are strictly related, as shown
by the bounds introduced in the literature [8], [15], [16].
Analogous definitions can be given for weighted graphs.

Definition 1 (Frustration index) The weighted frustration
index of a signed graph G, denoted ε(G), is the minimum
weighted sum of the positive edges over all signature simi-
larity transformations of L, Ls = SLS with S a signature
matrix:

ε(G) = min
S=diag{s1,...,sn},

si=±1

1

2

∑
i 6=j

([Ls]ij + [|Ls|]ij) . (1)

From Theorem 1 if G is structurally balanced, then ε(G) = 0.
When G is not balanced, then ε(G) is the least amount of edge
weights whose deletion (or sign change) makes the graph
balanced over all possible similarity transformations with S.

Definition 2 (Algebraic conflict) The algebraic conflict of
a signed graph G, denoted ξ(G), is the smallest eigenvalue
of the normalized signed Laplacian L of G: ξ(G) = λ1(L).

Both ε(G) and ξ(G) can be used to characterize the graph
distance from the structurally balanced state. In Example 1
we show that the two are correlated, although not identical.

B. The second smallest Laplacian eigenvalue

For an unsigned graph G, the value of the second smallest
eigenvalue of the normalized Laplacian, denoted algebraic
connectivity, is related to the connectivity of G and, in
particular, λ2(L) = 0 if and only if G is not connected [29].

Through numerical analysis on Erdős-Rényi networks,
see Example 1, it is possible to observe that while λ1(L)
changes with β, i.e., with different signatures over the edges,
the value of λ2(L) remains basically constant, implying
that the maximum distance λ2(L) − λ1(L) is obtained for
a structurally balanced (or unsigned) graph. This is the
situation described in [20].



III. DECISION-MAKING IN ANTAGONISTIC NONLINEAR
MULTIAGENT SYSTEMS

Consider the following class of nonlinear interconnected
systems

ẋ = f(x, π) = −∆x+ πAψ(x), x ∈ Rn (2)

where ∆ = diag {δ1, . . . , δn}, A = [aij ] is the adjacency
matrix of the network G, π > 0 is a positive scalar parameter,
and ψ(x) = [ψ1(x1) . . . ψn(xn)]T . In the context of social
networks, the entry xi of the state vector x = [x1 . . . xn]T ∈
Rn represents the opinion of the i-th agent, and the matrix A
describes the interactions among the agents: for each element
aji, its sign defines the relationship among the agents i and
j, friendly (+) or unfriendly (−), while its absolute value is
the amount of “trust” (or “distrust”) that agent i puts on agent
j. When the matrix is symmetric, this translates into agents i
and j sharing the same amount of trust/distrust. The function
ψi(xi) describes how an agent i expresses its opinion to
its first neighbors. The same ψi(xi) is “broadcasted” to
all neighbors, weighted by the aji terms. The parameter π
represents the social effort, or strength of the commitment
among the agents, and indicates the collective amount of
commitment to the overall interaction process [19].

We assume that the weighted matrix A is signed with null
diagonal, irreducible and symmetric; moreover we assume
that a Laplacian-like assumption relates ∆ and A, δi =∑
j |aij | for all i. Finally, let each function ψi(xi) : R→ R

of the vector ψ(x) satisfy the following conditions:

ψi(xi) = −ψi(−xi), ∀xi ∈ R (odd) (A.1)
∂ψi
∂xi

(xi) > 0, ∀xi ∈ R and
∂ψi
∂xi

(0) = 1 (monotone) (A.2)

lim
xi→±∞

ψi(xi) = ±1 (saturated) (A.3)

ψi(xi)

{
strictly convex ∀xi < 0

strictly concave ∀xi > 0
(sigmoidal). (A.4)

At the origin, when π = 1, the Jacobian is J = ∂f
∂x (0, 1) =

−(∆ − A) = −L. The system (2) is monotone if the
Kamke condition is satisfied, see [26], which in graph theory
translates into G being structurally balanced.

Our task is to investigate the presence and the stability
of equilibrium points of the system (2) with respect to the
bifurcation parameter π. The system (2) can be rewritten in
a “normalized” form,

ẋ = ∆ [−x+ πHψ(x)] , x ∈ Rn, (3)

where H := ∆−1A. Note that H is symmetrizable, therefore
its eigenvalues are real [21]; let them be arranged in a
nondecreasing order. Since H is signed, it follows that
λn(H) ≤ ρ(H) ≤ ρ(|H|) = 1 [30].

A. Previous results: structurally balanced graphs

If the system (3) is cooperative, its adjacency matrix is
nonnegative, meaning that only friendly relationships exist
among the agents. In this case it is known how the pres-
ence of equilibria depends on the value of the bifurcation

parameter π, see [20], [31]. The same result holds in general
when the system is monotone, i.e., when the graph is
structurally balanced. The main results we obtained in [20]
are summarized in the following theorem.

Theorem 2 Consider the system (3) where each nonlinear
function ψi(xi) satisfies the properties (A.1)÷(A.4). Assume
that the signed graph G is structurally balanced and let S
be the signature matrix s.t. SLS has all nonpositive off-
diagonal entries (|A| = SAS).
• When π < 1 the origin is the unique equilibrium point

and it is asymptotically stable.
• When π = π1 = 1 the system undergoes a pitchfork

bifurcation, the origin becomes unstable and two new
equilibria appear in the orthants described by S and
−S, respectively, denoted SRn+ and SRn−. These equi-
libria are locally asymptotically stable with domain of
attraction at least equal to SRn+ and SRn−, respectively.

• If λ2(L) < 1 and simple, when π = π2 = 1
1−λ2(L) the

system undergoes a second pitchfork bifurcation, and
new equilibria in other orthants of Rn appear, which
may be stable or unstable.

B. New results: structurally unbalanced graphs

Our task is to extend the analysis carried out in [19], [20]
to the context of general signed social networks. We therefore
assume that the matrix A is signed. The following theorem
presents the necessary and sufficient condition for the system
(3) to admit (at least) one equilibrium point in a generic
orthant of Rn. Similarly to [20], the necessary part of the
proof relies on geometric considerations, while the sufficient
part uses singularity analysis of bifurcations.

Theorem 3 Consider the system (3) where each nonlinear
function ψi(xi) satisfies the properties (A.1)÷(A.4). Assume
that the largest eigenvalue of the normalized interaction ma-
trix H , λn(H), is simple. The system admits an equilibrium
point x∗ 6= 0 (|x∗| > 0), if and only if π > π1 = 1

λn(H) .

Proof.
[Necessity] Let x∗ 6= 0 (|x∗| > 0) be an equilibrium
point for the system (3), which is x∗ = πHψ(x∗). Let
M= diag {m1, . . . ,mn} with mi =

ψi(x
∗
i )

x∗
i
∈ (0, 1) ∀ i ∈

I := {1, . . . , n}, which follows from (A.2) and (A.4). Then

x∗ = πHψ(x∗) = πHMx∗ (4)

that is, ( 1
π , x

∗) is an eigenpair of HM . Let Hsym =

∆
1
2H∆−

1
2 ∼ H be the symmetric version of H , where

∼ indicates similarity, and apply the change of coordinates
z∗ = (M∆)

1
2x∗ to (4). Then z∗ = πM

1
2HsymM

1
2 z∗ implies

that ( 1
π , z
∗) is an eigenpair of M

1
2HsymM

1
2 which is now

a symmetric matrix: ∃ k ∈ I such that λk(M
1
2HsymM

1
2 ) =

1
π . By Ostrowski’s Theorem (Theorem 4.5.9 in [30]) it
follows that there exists a θk ∈ [mini{mi},maxi{mi}]
such that θkλk(Hsym) = λk(M

1
2HsymM

1
2 ) = 1

π . The
condition 0 < θk ≤ maxi{mi} < 1 implies that Hsym has
a positive eigenvalue λk(Hsym) > 1

π , for a certain k ∈ I.



Since H is similar to Hsym, it follows that also H has a
positive eigenvalue λk(H) s.t. 1 < πλk(H). Finally, let
π1 = 1

λn(H) ; since λk(H) ≤ λn(H) for all k ∈ I, we
obtain 1 < πλk(H) ≤ πλn(H) = π

π1
. Therefore the system

(3) admits a nontrivial equilibrium point x∗ only if π > π1.
[Sufficiency] To prove the sufficiency part of the theorem
we use bifurcation theory as explained in [33]. The aim is
to study the change in the number of solutions of

Φ(x, π) = −x+ πHψ(x) = 0 (5)

when the parameter π is varying. Let J = ∂Φ
∂x (0, π1) = −I+

π1H . If λn(H) is a simple eigenvalue of H , rank J = n−1;
let v and w be the right and left eigenvectors associated
to λn(H), normalized such that wT v = 1. Following the
Liapunov-Schmidt reduction approach, let E denote the pro-
jection of Rn onto range(J) =

(
ker(JT )

)⊥
= (span{w})⊥,

E = I − vwT , and I − E the projection onto ker(J) =
span{v}. Then the system of equations (5) near (0, π1) can
be expanded into the equivalent system

E Φ(x, π) = E (−x+ πHψ(x)) = 0 (6a)
(I − E) Φ(x, π) = (I − E) (−x+ πHψ(x)) = 0. (6b)

Decompose x in the form x = y v + r, where y ∈ R and
r = E x ∈ (span{w})⊥. Given that λn(H) is simple, it
follows that (6a) can be solved for n− 1 of the x variables,
r = R(yv, π), applying the implicit function theorem.
Substituting the solution r of (6a) in (6b), one obtains the
reduced mapping φ, or center manifold,

φ(y, π) = (I − E)
[
−yv −R(yv, π)

+ πHψ
(
yv +R(yv, π)

)]
= 0. (7)

Defining g(y, π) = wTφ(y, π), its zeros are in one-to-one
correspondence with the solutions of (5), and if the partial
derivatives gy , gyy, gyyy, gπ , gπy at (0, π1) satisfy

g = gy = gyy = gπ = 0, gyyy gπy < 0 (8)

then (8) solves the recognition problem for a pitchfork
bifurcation [33]. Using the notation introduced in [33] (in
particular equation (3.23), which shows how the explicit
expression of r is not needed), and observing that Φ is odd,
the calculations reduce to

Φy(0, π1) =
∂Φ

∂x
(x, π)

∣∣∣∣
(0,π1)

v =

(
−I + πH

∂ψ(x)

∂x

)∣∣∣∣
(0, π1)

v

= (−I + π1H) v =
(
−1 + π1λn(H)

)
v = 0 (9)

Φyy(0, π1) = πH

(
∂

∂x

(
∂ψ(x)

∂x
v

))∣∣∣∣
(0,π1)

v = 0 (10)

Φπ(0, π1) =
∂Φ

∂π
(x, π)

∣∣∣∣
(0,π1)

= Hψ(x)|(0,π1) = 0, (11)

where we have used the assumptions (A.1), (A.2) and (A.4),
giving ψ(0) = 0, ∂ψ(x)

∂x (0) = I , and ∂2ψi

∂x2
i

(0) = 0 ∀ i.

Therefore, (9), (10) and (11) yield gy(0, π1) = gyy(0, π1) =
gπ(0, π1) = 0. The two remaining partial derivatives are

Φπy(0, π1) = H
∂ψ(x)

∂x

∣∣∣∣
(0,π1)

v = Hv = λn(H) v

Φyyy(0, π1) = πH

(
∂

∂x

(
∂

∂x

(
∂ψ(x)

∂x
v

)
v

))∣∣∣∣
(0,π1)

v

= π1H
∂3ψ

∂x3
(0)

v
3
1
...
v3
n


where we denote ∂3ψ

∂x3 (0) := diag
{
∂3ψ1

∂x3
1

(0), . . . , ∂
3ψn

∂x3
n

(0)
}

.

From (A.4) it follows that ∂3ψ
∂x3 (0) is negative definite.

Therefore, gπy(0, π1) = wTΦπy(0, π1) = λn(H) > 0 and
gyyy(0, π1) = wTΦyyy(0, π1) =

∑n
i=1

∂3ψi

∂x3
i

(0)wiv
3
i < 0,

since wiv
3
i ≥ 0 ∀i. Then (8) holds, which solves the

recognition problem for a pitchfork bifurcation, meaning that
the number of solutions “jumps” from one to three. Hence at
π = π1 the system crosses a bifurcation through the origin
and two new equilibria appear along span{v}.

Corollary 1 If the system (3) admits an equilibrium point
x∗ 6= 0, then also −x∗ is an equilibrium point.

Proof. It follows from the assumption (A.1). Let x∗ be an
equilibrium point. Then −x∗=−πHψ(x∗)=πHψ(−x∗).

Remark 1 The value π1 = 1
λn(H) is positive and well-

defined. In fact, assume that λn(H) ≤ 0 which, together
with 0 = Tr(H) =

∑n
i=1 λi(H), implies λi(H) = 0 for

all i = 1, . . . , n. Given that ∆ is positive definite, it follows
that λi(A) = 0 for all i; however, A nilpotent and symmetric
implies A zero matrix, which is a contradiction.

Remark 2 The condition “λn(H) is simple” is not always
satisfied for a signed structurally unbalanced graph G, see
[32]. In this case the intuition, suggested by the reading of
[33] and by numerical analysis, is that multiple equilibria
(more than three) for the system (3) arise when π > π1.

Theorem 3 shows that the system undergoes a pitchfork
bifurcation when π=π1 = 1

λn(H) = 1
1−λ1(L) , by definition of

normalized signed Laplacian. Next, we prove the instability
of the origin and the asymptotic stability of the two new
equilibria of the system, using the notation introduced in the
proof of Theorem 3, in particular Φ(x, π) = −x+πHψ(x).

Corollary 2 (Stability) Under the assumptions of Theo-
rem 3, when π = π1 the system undergoes a pitchfork bifur-
cation, the origin becomes unstable and two new equilibria
appear, which are locally asymptotically stable.

Proof. The existence is shown in the proof of Theorem 3,
where it is also proven that the bifurcation is a pitchfork.

The linearized system at the origin is ẋ = ∆∂Φ
∂x (0, π)x =

∆(−I + πH)x, where ∆ is positive definite and ∂Φ
∂x (0, π)



has eigenvalues πλ1(H)−1, . . . , πλn(H)−1. When π > π1,
∂Φ
∂x (0, π) has at least one positive eigenvalue, which proves
the instability of the origin as equilibrium point of (3).

To prove that instead the new equilibrium point x∗ (and
−x∗) is (locally) asymptotically stable, we use Theorem I4.1
[33]. Let ż = Jz be the linearization of ẋ = Φ(x, π) at
(0, π1), where J = ∂Φ

∂x (0, π1) = −I + π1H has one zero
eigenvalue and n− 1 strictly negative eigenvalues. Then x∗,
solution of Φ(x, π) = 0 and corresponding to the solution
y∗ of g(y, π) = 0 (defined in the proof of Theorem 3), is
asymptotically stable if gy(y∗, π) < 0. Theorem 3 shows that
in a neighborhood of the bifurcation x∗ ∈ span{v}, where
v is the right eigenvector associated with λn(H). Moreover
x∗ = y∗v = πHψ(y∗v) implies y∗ = πλn(H)wTψ(y∗v)
(since wT v = 1). Since ψ(·) satisfies assumption (A.4), then

gy(y∗, π) = −1 + πλn(H)wT
∂ψ

∂x
(y∗v) v

< −1 +
πλn(H)wTψ(y∗v)

y∗
= 0.

Theorem 4 Under the assumptions of Theorem 3, if
λ2(L) < 1 and simple, when π = π2 = 1

1−λ2(L) the
system (3) undergoes a second pitchfork bifurcation, and new
equilibria in other orthants of Rn appear.

The proof, which follows from arguments similar to those
introduced in the proof of Theorem 3, is omitted for lack of
space.

Remark 3 The equilibria mentioned in Theorem 4 are un-
stable at the bifurcation, since the linearized system at (0, π2)
described by J = −I+π2H is unstable. However, when the
value of π increases further, the system can bifurcate again,
leading to new equilibria which can be stable or unstable.

IV. INTERPRETATION OF THE RESULTS

Theorems 3 and 4, as well as the numerical analysis shown
in the next section, suggest that the behavior described in
[20], [31] still hold in the more generic case of a signed graph
G. Indeed, if λ1(L) is simple and λ2(L) < 1, it is possible
to define a value π2 > π1 and hence an interval (π1, π2) of
values of π for which the system (3) admits, in addition
to the origin, only two alternative equilibrium points x∗

and −x∗ which are locally asymptotically stable. As shown
in Theorem 3, the system (3) undergoes a first pitchfork
bifurcation for a value of the social effort that depends on
the smallest eigenvalue of the normalized signed Laplacian.
Since the algebraic conflict ξ(G) = λ1(L) represents a
measure of the structural imbalance of G, it can be observed
that having a highly unbalanced graph implies that the system
(3) needs a higher social effort in order to converge to
some equilibrium point x∗ different from the origin. This
equilibrium point represents a decision among the agents,
that could be of agreement (if x∗ ∈ Rn+,Rn−) or disagreement
(otherwise), which does not depend on the initial opinions.

If we assume that λ1(L) is simple, the system bifurcates a
second time when π > π2, where π2 depends on the second
smallest eigenvalue of the normalized signed Laplacian, the

algebraic connectivity. In this case, the system (3) admits
multiple equilibria which can be stable or unstable and the
convergence to an equilibrium point is determined by the
initial conditions, see Example 2. These and other properties
of the system are illustrated in the examples of the next
section. The main features can be summarized as follows.
• The social effort needed to achieve a nontrivial decision

is (roughly) proportional to the frustration index ε(G),
since ξ(G) = λ1(L) = 1− λn(H) and ε(G) ∼ ξ(G).

• The “robustness” of the decision, i.e., the interval
(π1, π2), decreases with the increase of the frustration.

• The amount of frustration that can be encoded in a graph
depends on the algebraic topology of the graph, i.e.,
λ1(L) is upper bounded by λ2(L).

V. EXAMPLES

Example 1 In this example we consider a sequence of
signed weighted graphs, whose signature is dependent on
a parameter β ∈ [0, 1]. Each graph G of the sequence is an
Erdős-Rényi graph with n = 500 nodes, edge probability
p = 0.4, and for which the value of β defines the negative
edge probability as follows: P [negative edge in G] = pβ.
The sequence is considered for increasing values of β, equal
to 0, 0.05, . . . , 0.95, 1, hence the number of negative edges
of each graph G grows in a linear way with β.

Our first aim is to show that the algebraic conflict gives a
measure of imbalance of the graph, as it behaves similarly to
the frustration index; in Fig. 1(a) it is possible to notice that
the frustration index ε(G) grows linearly with the algebraic
conflict λ1(L). However, when β ≥ 0.5, ε(G) remains
(roughly) constant while λ1(L) slightly increases. As for
unweighted graphs, the intuition is that the algebraic conflict
is an approximation of the frustration index and that it could
be used to bound its value. The choice of using the smallest
normalized Laplacian eigenvalue, see Fig. 1(b), instead of the
smallest Laplacian eigenvalue, see Fig. 1(c), as measure of
algebraic conflict is justified by the former resembling more
closely what happens on unweighted graphs [6] and by our
need to use the eigenvalues of the normalized Laplacian in
Theorems 3 and 4 (see [20] for further details).

The second task of this example is to investigate the size
of the gap between the two smallest eigenvalues of the nor-
malized signed Laplacian when only β, i.e., the percentage
of negative edges in the graph, changes. As depicted in
Fig. 1(d), the gap is maximum when the graph is unsigned
(or structurally balanced). At around β = 0.5, the gap is
basically closed (λ2(L) − λ1(L) = 0.002) meaning that
the two pitchfork bifurcations happen almost simultaneously.
Hence the strong social commitment value (i.e. π) needed to
achieve a decision in this case results in multiple (more than
3) possible decision states.

Example 2 Consider an Erdős-Rényi graph with n = 50
nodes, edge probability p = 0.4, and negative edge proba-
bility pβ, β = 0.4. Both λ1(L) and λ2(L) are simple, and
π1 = 1.97, while π2 = 2.24. In Figure 2, we show that
when π < π1, the origin is the only equilibrium point (black



dots). When π ∈ (π1, π2), the system (3) admits only x∗

and −x∗ as (locally) asymptotically stable equilibrium points
(red dots). When π > π2, new equilibria arise, which can be
stable or unstable (blue dots).

(a) (b)

(c) (d)

Fig. 1: Example 1. (a): Comparison between algebraic conflict ξ(G)
and frustration index ε(G). (b): λ1(L) and (c): λ1(L) as β increases.
(d) Gap between λ1(L) and λ2(L) as β increases.

Fig. 2: Example 2. Norm of the equilibria x∗ of the system (3), for
different values of π. The first bifurcation happens at π = π1 > 1.

VI. CONCLUSIONS

In this work we have investigated how the frustration
of a social network influences the appearance of nonzero
equilibria as function of a scalar parameter playing the role
of social effort, for a particular class of nonlinear intercon-
nected systems with sigmoidal, monotonically increasing and
saturated nonlinearities, and with a signed adjacency graph.

We have shown that, similarly to the unsigned graph case,
the system undergoes a pitchfork bifurcation beyond which
two nontrivial equilibria appear. However, for a signed graph,
the value of social effort at which the bifurcation happens
is a function of the frustration of the graph, meaning that a
higher level of frustration requires a higher value of social
commitment to be able to achieve a nontrivial decision state.
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